multiplying both equations with (x+1)(x+2)
x(x+2) - (x+1) = 3(x+1)(x+2)
x²+2x-x-1 = 3 (x²+2x+x+2)
x²+x-1 = 3x²+9x+6
2x²+8x+7 = 0
apply quadratic formula
x = (-8± √(8²-4(2)7))) / 2(2)
x = (-4±√2)/2
x(x+2) - (x+1) = 3(x+1)(x+2)
x²+2x-x-1 = 3 (x²+2x+x+2)
x²+x-1 = 3x²+9x+6
2x²+8x+7 = 0
apply quadratic formula
x = (-8± √(8²-4(2)7))) / 2(2)
x = (-4±√2)/2
-
x(x + 2) - (x + 1) = 3(x + 1)(x + 2)
x^2 + 2x - x - 1 = 3x^2 + 9x + 6
2x^2 + 8x + 7 = 0
x = [-8 +/- sqrt(8)] / 4 = -2 +/- sqrt(2)/2
Check them!
x^2 + 2x - x - 1 = 3x^2 + 9x + 6
2x^2 + 8x + 7 = 0
x = [-8 +/- sqrt(8)] / 4 = -2 +/- sqrt(2)/2
Check them!
-
x^2+2x-x-1 = 3(x+1)(x+2) = 3[x^2+3x+2]
x^2+x-1 = 3x^2+9x+6
2x^2+8x+7 = 0
x = [-8±sqrt(8)]/4
x = -2 ± sqrt(2)/2
x^2+x-1 = 3x^2+9x+6
2x^2+8x+7 = 0
x = [-8±sqrt(8)]/4
x = -2 ± sqrt(2)/2