f'(3) =
f'(-2) =
f'(-2) =
-
f'(x) = -[9/8x^4 + 5/8x^6]
how you got derivative ,,,,,,so first rearrenge the given function as
f(x) = 3/8 * (x^-3) + 1/8* (x^-5)
f'(x) = 3/8 d/dx (x^-3) + 1/8 d/dx(x^-5)
= 3/8 *(-3)* (x^-4) + 1/8 * (-5) * (x^-6)
= ( -9/8x^4 ) + ( -5/8x^6)
f'(3) = -(86/5832)
f'(-2) = -(41/512)
how you got derivative ,,,,,,so first rearrenge the given function as
f(x) = 3/8 * (x^-3) + 1/8* (x^-5)
f'(x) = 3/8 d/dx (x^-3) + 1/8 d/dx(x^-5)
= 3/8 *(-3)* (x^-4) + 1/8 * (-5) * (x^-6)
= ( -9/8x^4 ) + ( -5/8x^6)
f'(3) = -(86/5832)
f'(-2) = -(41/512)
-
Heh$37.$3$:!'nejnnjrj847,$!4$.!deals which equals heh$4!7!/@4&!3!;!! By the power of brush!5$7.!7.!