Ok, so I need help with finding the answer to this...
evaluate the limit, if it exist
((h+x)^3-x^3)/h limit h-->0
evaluate the limit, if it exist
((h+x)^3-x^3)/h limit h-->0
-
You are being introduced to Calculus. First expand the cubic
(x + h)^3 = x^3 + 3x^2*h + 3x*h^2 + h^3
Now realize that you are going to take x^3 from this
(x + h)^3 - x^3 = 3x^2h + 3xh^2 + h^3
Now divide by h
h(3x^2 + 3xh + h^2)
=============
h
The h's will cancel out.
What you are left with is
3x^2 + 3xh + h^2
Use this to get a limit
limit (3x^2 + 3xh + h^2)
h-->0
leaves 3x^2
Answer 3x^2
(x + h)^3 = x^3 + 3x^2*h + 3x*h^2 + h^3
Now realize that you are going to take x^3 from this
(x + h)^3 - x^3 = 3x^2h + 3xh^2 + h^3
Now divide by h
h(3x^2 + 3xh + h^2)
=============
h
The h's will cancel out.
What you are left with is
3x^2 + 3xh + h^2
Use this to get a limit
limit (3x^2 + 3xh + h^2)
h-->0
leaves 3x^2
Answer 3x^2
-
A) Don't start a statement with "OK, so..."
B) ((h+x)^3-x^3)/h = (x^3 +3x^2h+3xh^2+h^3 -x^3)/h = (3x^2h+3xh^2+h^3)/h = 3x^2+3xh+h^2
limit h-->0 ((h+x)^3-x^3)/h = limit h-->0 3x^2+3xh+h^2 = 3x^2
B) ((h+x)^3-x^3)/h = (x^3 +3x^2h+3xh^2+h^3 -x^3)/h = (3x^2h+3xh^2+h^3)/h = 3x^2+3xh+h^2
limit h-->0 ((h+x)^3-x^3)/h = limit h-->0 3x^2+3xh+h^2 = 3x^2
-
Remember that
a³ - b³ = (a - b)(a² + ab + b²)
Apply this rule, where
a = h + x
b = x
[(h + x) - x][(h + x)² + (h + x)x + x²]/h
h[(h + x)² + (h + x)x + x²]/h
[(h + x)² + (h + x)x + x²]
lim_h→0 [(h + x)² + (h + x)x + x²] = 3x²
a³ - b³ = (a - b)(a² + ab + b²)
Apply this rule, where
a = h + x
b = x
[(h + x) - x][(h + x)² + (h + x)x + x²]/h
h[(h + x)² + (h + x)x + x²]/h
[(h + x)² + (h + x)x + x²]
lim_h→0 [(h + x)² + (h + x)x + x²] = 3x²
-
This is also the differentiation of x^3, which is 3x^2