integrate e^(tan^-1 x)*[(1+x+x^2)/(1+x^2)]
-
Note : ∫ ℯ ͧ .[ ƒ(u) + ƒ'(u) ] du = ℯ ͧ .ƒ(u) .................. (1)
__________________________________
I = ∫ e^( tanֿ¹ x ) · [ ( 1 + x + x² ) / ( 1 + x² ) ] dx
I = ∫ e^( tanֿ¹ x ) · ( 1 + x + x² ) · [ 1 / ( 1 + x² ) ] dx .............. (2)
__________________________________
Let : u = tanֿ¹ x.
Then : du/dx = 1 / ( 1 + x² )
. and : [ 1 / ( 1 + x² ) ] dx = du.
Also : x = tan u
so that : 1 + x + x² = 1 + tan u + tan² u
. . . . . . . . . . . . . . .= tan u + ( 1 + tan² u )
. . . . . . . . . . . . . . .= tan u + sec² u.
____________________________________
From (2), then,
I = ∫ ℯ ͧ . ( tan u + sec² u ) du
= ∫ ℯ ͧ .[ ƒ(u) + ƒ'(u) ] du, .............. ƒ(u) = tan u
= ℯ ͧ .ƒ(u) + C ............................... from (1)
= [ e^( tanֿ¹ x ) ]· tan u + C
= [ e^( tanֿ¹ x ) ]· x + C
= x·[ e^( tanֿ¹ x ) ] + C ....................... Ans.
_________________________
__________________________________
I = ∫ e^( tanֿ¹ x ) · [ ( 1 + x + x² ) / ( 1 + x² ) ] dx
I = ∫ e^( tanֿ¹ x ) · ( 1 + x + x² ) · [ 1 / ( 1 + x² ) ] dx .............. (2)
__________________________________
Let : u = tanֿ¹ x.
Then : du/dx = 1 / ( 1 + x² )
. and : [ 1 / ( 1 + x² ) ] dx = du.
Also : x = tan u
so that : 1 + x + x² = 1 + tan u + tan² u
. . . . . . . . . . . . . . .= tan u + ( 1 + tan² u )
. . . . . . . . . . . . . . .= tan u + sec² u.
____________________________________
From (2), then,
I = ∫ ℯ ͧ . ( tan u + sec² u ) du
= ∫ ℯ ͧ .[ ƒ(u) + ƒ'(u) ] du, .............. ƒ(u) = tan u
= ℯ ͧ .ƒ(u) + C ............................... from (1)
= [ e^( tanֿ¹ x ) ]· tan u + C
= [ e^( tanֿ¹ x ) ]· x + C
= x·[ e^( tanֿ¹ x ) ] + C ....................... Ans.
_________________________
-
You are Welcome, CG !
Report Abuse
-
http://hitslikeyou.com/