∫((x)/(x+6))dx
Cannot seem to get it right using the partial fractions technique, as is the section I am doing.
Cannot seem to get it right using the partial fractions technique, as is the section I am doing.
-
∫(x)/(x+6) dx
Let u = x + 6
du = dx
∫(u - 6) / u du
∫du - 6∫du/u
u - 6ln|u| + C
x + 6 - 6ln|x +6| + C
The 6 can be absorbed by the constant:
x - 6ln|x + 6| + C
Let u = x + 6
du = dx
∫(u - 6) / u du
∫du - 6∫du/u
u - 6ln|u| + C
x + 6 - 6ln|x +6| + C
The 6 can be absorbed by the constant:
x - 6ln|x + 6| + C
-
∫ x/(x+6) .dx
let u = x+6 => du = dx
I(u) = ∫ (u-6)/u .du = ∫ 1- (6/u) .du = u - 6log(u) +c
=>
I(x) = (x+6) - 6log(x+6) +C
= x - 6log(x+6) +C for some const C.
let u = x+6 => du = dx
I(u) = ∫ (u-6)/u .du = ∫ 1- (6/u) .du = u - 6log(u) +c
=>
I(x) = (x+6) - 6log(x+6) +C
= x - 6log(x+6) +C for some const C.