(1/4)^(2x-3) = 8^(x+5)
2x-3 is the exponent of 1/4 and x+5 is the exponent of 8.
2x-3 is the exponent of 1/4 and x+5 is the exponent of 8.
-
2^(-4x+6) = 2^(3x+15) , now solve for x
-
Apply ln!
(2*x - 3)*ln(1/4) = (x + 5)*ln(8)
2*x*ln(1/4) - 3*ln(1/4) = x*ln(8) + 5*ln(8)
2*x*ln(1/4) - x*ln(8) = 5*ln(8) + 3*ln(1/4)
2*x = (5*ln(8) + 3*ln(1/4))/(2*ln(1/4) - ln(8))
x = (5*ln(8) + 3*ln(1/4))/(2*ln(1/4) - ln(8))
x = - 1.285714286
(2*x - 3)*ln(1/4) = (x + 5)*ln(8)
2*x*ln(1/4) - 3*ln(1/4) = x*ln(8) + 5*ln(8)
2*x*ln(1/4) - x*ln(8) = 5*ln(8) + 3*ln(1/4)
2*x = (5*ln(8) + 3*ln(1/4))/(2*ln(1/4) - ln(8))
x = (5*ln(8) + 3*ln(1/4))/(2*ln(1/4) - ln(8))
x = - 1.285714286
-
...both (1/4) and 8 are base-2 numbers
(1/4) = 2^(- 2)
8 = 2^3
so,
[2^(- 2)]^(2x - 3) = 2^(- 4x + 6) = 2^(3x + 15)
so...
- 4x + 6 = 3x + 15
7x = - 9
x = - 9/7
check
qed
(1/4) = 2^(- 2)
8 = 2^3
so,
[2^(- 2)]^(2x - 3) = 2^(- 4x + 6) = 2^(3x + 15)
so...
- 4x + 6 = 3x + 15
7x = - 9
x = - 9/7
check
qed
-
¼^(2x - 3) = 8^(x + 5)
(2x - 3) Log ¼ = (x + 5) Log 8
(2x - 3)(- 0.6021) = (x + 5)(0.9031)
- 1.21x + 1.81 = 0.9031x + 4.52
- 1.21x - 0.9031x = 4.52 - 1.81
- 2.1x = 2.71
x = 2.71 / - 2.1
x = - 1.29
¯¯¯¯¯¯¯¯¯
(2x - 3) Log ¼ = (x + 5) Log 8
(2x - 3)(- 0.6021) = (x + 5)(0.9031)
- 1.21x + 1.81 = 0.9031x + 4.52
- 1.21x - 0.9031x = 4.52 - 1.81
- 2.1x = 2.71
x = 2.71 / - 2.1
x = - 1.29
¯¯¯¯¯¯¯¯¯
-
1/4 = 8^(-2/3), so
(8^(-2/3))^(2x-3) = 8^(x+5), or
8^(-2/3*(2x-3)) = 8^(x+5)
I think you can figure out the rest.
(8^(-2/3))^(2x-3) = 8^(x+5), or
8^(-2/3*(2x-3)) = 8^(x+5)
I think you can figure out the rest.