Please show steps
Thank you
Thank you
-
f(x) = (x^2 - 7)/(7 - x^2) = (x^2 - 7)/-(x^2 - 7) = -1
f '(x) = 0
f '(x) = 0
-
f(x) = (x² - 7) / (7 - x²)
u = x² - 7
u' = 2x
v = 7 - x²
v' = - 2x
f '(x) = (u'v - uv') / v²..............(Quotient Rule)
f '(x) = [2x(7 - x²) - (x² - 7)(- 2x)] / (7 - x²)²
f '(x) = [(14x - 2x³) - (- 2x³ + 14x)] / (7 - x²)²
f '(x) = (14x - 2x³ + 2x³ - 14x) / (7 - x²)²
f '(x) = 0 / (7 - x²)²
f '(x) = 0
¯¯¯¯¯¯¯
...
u = x² - 7
u' = 2x
v = 7 - x²
v' = - 2x
f '(x) = (u'v - uv') / v²..............(Quotient Rule)
f '(x) = [2x(7 - x²) - (x² - 7)(- 2x)] / (7 - x²)²
f '(x) = [(14x - 2x³) - (- 2x³ + 14x)] / (7 - x²)²
f '(x) = (14x - 2x³ + 2x³ - 14x) / (7 - x²)²
f '(x) = 0 / (7 - x²)²
f '(x) = 0
¯¯¯¯¯¯¯
...
-
.........x^2 - 7
f(x) =--------------
..........7 - x^2
.........x^2 - 7
f(x) =- ------------
..........x^2 - 7
f(x) = - 1
f'(x) = 0 answer//
f(x) =--------------
..........7 - x^2
.........x^2 - 7
f(x) =- ------------
..........x^2 - 7
f(x) = - 1
f'(x) = 0 answer//
-
Sub out a negative one in the denominator. F(x) = -1, so the derivative (dy/dx) is 0.
-
f(x)=(x²-7)/(7-x²)
f'(x)=[2x(7-x²)-(x²-7)(-2x)]/(7-x²)²
f'(x)=0
f'(x)=[2x(7-x²)-(x²-7)(-2x)]/(7-x²)²
f'(x)=0
-
Dy/dx = 2x - 0 - 2x = 0