given the range 0 < x <360 solve: (1 d.p)
cos(x-45) = sinx
cos(x-45) = sinx
-
cos(x - 45) = sin(x)
cos(x)cos(45) + sin(x)sin(45) = sin(x)
cos(x) * (sqrt(2)/2) + sin(x) * (sqrt(2)/2) = sin(x)
(sqrt(2)/2) * cos(x) = sin(x) - sin(x) * sqrt(2)/2
(sqrt(2)/2) * cos(x) = sin(x) * (1 - sqrt(2)/2)
sqrt(2) * cos(x) = sin(x) * (2 - sqrt(2))
sin(x)/cos(x) = sqrt(2) / (2 - sqrt(2))
tan(x) = sqrt(2) * (2 + sqrt(2)) / (4 - 2)
tan(x) = (2 * sqrt(2) + 2) / 2
tan(x) = sqrt(2) + 1
x = arctan(sqrt(2) + 1)
x = 67.5 , 247.5
cos(x)cos(45) + sin(x)sin(45) = sin(x)
cos(x) * (sqrt(2)/2) + sin(x) * (sqrt(2)/2) = sin(x)
(sqrt(2)/2) * cos(x) = sin(x) - sin(x) * sqrt(2)/2
(sqrt(2)/2) * cos(x) = sin(x) * (1 - sqrt(2)/2)
sqrt(2) * cos(x) = sin(x) * (2 - sqrt(2))
sin(x)/cos(x) = sqrt(2) / (2 - sqrt(2))
tan(x) = sqrt(2) * (2 + sqrt(2)) / (4 - 2)
tan(x) = (2 * sqrt(2) + 2) / 2
tan(x) = sqrt(2) + 1
x = arctan(sqrt(2) + 1)
x = 67.5 , 247.5
-
cos(x - 45) = sinx
=> cos(x - 45) = cos(90 - x) or cos(450 - x)
=> x - 45 = 90 - x and 450 - x
=> 2x = 135 and 495
x = 135/2 and 495/2
x = 67.5 and 247.5 degrees
=> cos(x - 45) = cos(90 - x) or cos(450 - x)
=> x - 45 = 90 - x and 450 - x
=> 2x = 135 and 495
x = 135/2 and 495/2
x = 67.5 and 247.5 degrees