What is the integral of (x+3)dx/(x^2+2)^2 and how to find it?
-
Evaluate ∫ x dx / (x^2 + 2) using the substitution u = x^2 + 2, and
∫ 3 dx / (x^2 + 2) using the substitution x = √2 tan(u).
You should get (1/4)(3x - 2)/(x^2 + 2) + ((3√2)/8) arctan(x/√2) + C.
∫ 3 dx / (x^2 + 2) using the substitution x = √2 tan(u).
You should get (1/4)(3x - 2)/(x^2 + 2) + ((3√2)/8) arctan(x/√2) + C.
-
Cool!
Report Abuse