Please solved it in detail as i am getting answer but not the one given in text but as 100/3.
-
a = 3^(1/4) + 3^(-1/4) = (3^(2/4) + 1) / 3^(1/4) = (3^(1/2) + 1) / 3^(1/4)
b = 3^(1/4) - 3^(-1/4) = (3^(2/4) - 1) / 3^(1/4) = (3^(1/2) - 1) / 3^(1/4)
3 * (a^2 + b^2)^2 =>
3 * ((1/3^(1/4))^2 * (3^(1/2) + 1)^2 + (1/3^(1/4))^2 * (3^(1/2) - 1)^2)^2 =>
3 * (3^(-1/2) * ((3 + 2 * 3^(1/2) + 1 + 3 - 2 * 3^(1/2) + 1))^2 =>
3 * 3^(-1) * (3 + 3 + 1 + 1)^2 =>
1 * (8)^2 =>
1 * 64 =>
64
I don't know how you're getting 100/3, other than just simply making a mistake somewhere
a = 3^(1/4) + 3^(-1/4)
b = 3^(1/4) - 3^(-1/4)
a^2 =
(3^(1/4))^2 + 2 * 3^(1/4) * 3^(-1/4) + (3^(-1/4))^2 =
3^(1/2) + 2 * 1 + 3^(-1/2) =
3^(1/2) + 2 + 3^(-1/2)
b^2 =
(3^(1/4))^2 - 2 * 3^(1/4) * 3^(-1/4) + (3^(-1/4))^2 =
3^(1/2) - 2 * 1 + 3^(1/2) =
3^(1/2) + 3^(1/2) - 2
a^2 + b^2 =
3^(1/2) + 3^(-1/2) + 2 + 3^(1/2) + 3^(-1/2) - 2 =>
2 * 3^(1/2) + 2 * 3^(-1/2) =>
2 * (3^(1/2) + 3^(-1/2))
Square that:
2^2 * (3^(1/2) + 3^(-1/2))^2 =
4 * ((3^(1/2))^2 + 2 * 3^(1/2) * 3^(-1/2) + (3^(-1/2))^2) =
4 * (3 + 2 * 1/3) =
4 * (16/3) =
64/3
Multiply that all by 3
64
b = 3^(1/4) - 3^(-1/4) = (3^(2/4) - 1) / 3^(1/4) = (3^(1/2) - 1) / 3^(1/4)
3 * (a^2 + b^2)^2 =>
3 * ((1/3^(1/4))^2 * (3^(1/2) + 1)^2 + (1/3^(1/4))^2 * (3^(1/2) - 1)^2)^2 =>
3 * (3^(-1/2) * ((3 + 2 * 3^(1/2) + 1 + 3 - 2 * 3^(1/2) + 1))^2 =>
3 * 3^(-1) * (3 + 3 + 1 + 1)^2 =>
1 * (8)^2 =>
1 * 64 =>
64
I don't know how you're getting 100/3, other than just simply making a mistake somewhere
a = 3^(1/4) + 3^(-1/4)
b = 3^(1/4) - 3^(-1/4)
a^2 =
(3^(1/4))^2 + 2 * 3^(1/4) * 3^(-1/4) + (3^(-1/4))^2 =
3^(1/2) + 2 * 1 + 3^(-1/2) =
3^(1/2) + 2 + 3^(-1/2)
b^2 =
(3^(1/4))^2 - 2 * 3^(1/4) * 3^(-1/4) + (3^(-1/4))^2 =
3^(1/2) - 2 * 1 + 3^(1/2) =
3^(1/2) + 3^(1/2) - 2
a^2 + b^2 =
3^(1/2) + 3^(-1/2) + 2 + 3^(1/2) + 3^(-1/2) - 2 =>
2 * 3^(1/2) + 2 * 3^(-1/2) =>
2 * (3^(1/2) + 3^(-1/2))
Square that:
2^2 * (3^(1/2) + 3^(-1/2))^2 =
4 * ((3^(1/2))^2 + 2 * 3^(1/2) * 3^(-1/2) + (3^(-1/2))^2) =
4 * (3 + 2 * 1/3) =
4 * (16/3) =
64/3
Multiply that all by 3
64
-
there are 2 ways
a^2 = (3^(1/2) + 3^(-1/2) + 2
b^2 = (3^(1/2) + 3^(-1/2) - 2
add to get a^2+b^2 = 2(3^(1/2) + 3^(-1/2))
square again to get (a^2+b^2)^2 = 4 (3+1/3+2) = 4(4/3) = 64/3
multiply by 3 to get the result
2)
add a and b to get a + b= 2 *3^(1/4)
subtract to get (a-b) = 2* 3^(-1/4)
2(a^2+b^2) = (a+b)^2 + (a-b)^2 = 4 * 3^(1/2) + 4 * 3^(-1/2)
or a^2+b^2 = 2 * (3^(1/2) + 2 * 3^(-1/2))
from here you can proceed as in (1)
a^2 = (3^(1/2) + 3^(-1/2) + 2
b^2 = (3^(1/2) + 3^(-1/2) - 2
add to get a^2+b^2 = 2(3^(1/2) + 3^(-1/2))
square again to get (a^2+b^2)^2 = 4 (3+1/3+2) = 4(4/3) = 64/3
multiply by 3 to get the result
2)
add a and b to get a + b= 2 *3^(1/4)
subtract to get (a-b) = 2* 3^(-1/4)
2(a^2+b^2) = (a+b)^2 + (a-b)^2 = 4 * 3^(1/2) + 4 * 3^(-1/2)
or a^2+b^2 = 2 * (3^(1/2) + 2 * 3^(-1/2))
from here you can proceed as in (1)
-
Using brackets:-
a² = [3^(1/4) + 3^(-1/4)] [3^(1/4) + 3^(-1/4)]
a² = 3^(1/2) + 2 + 3^(-1/2)
b² = [3^(1/4) - 3^(-1/4) ] [3^(1/4) - 3^(-1/4)]
b² = 3^(1/2) - 2 + 3^(-1/2)
a² + b² = 2 [3^(1/2)] + 2 [3^(-1/2)]
a² + b² = 2[3^(-1/2)] [ 3 + 1 ]
a² + b² = 8 / 3^(1/2)
3 (a² + b²) = 8 [ 3^(1/2) ] = 8 √3
a² = [3^(1/4) + 3^(-1/4)] [3^(1/4) + 3^(-1/4)]
a² = 3^(1/2) + 2 + 3^(-1/2)
b² = [3^(1/4) - 3^(-1/4) ] [3^(1/4) - 3^(-1/4)]
b² = 3^(1/2) - 2 + 3^(-1/2)
a² + b² = 2 [3^(1/2)] + 2 [3^(-1/2)]
a² + b² = 2[3^(-1/2)] [ 3 + 1 ]
a² + b² = 8 / 3^(1/2)
3 (a² + b²) = 8 [ 3^(1/2) ] = 8 √3
-
a^2 = 3^1/2 + 1/3^1/2 + 2 and b^2 = 3^1/2 + 1/3^1/2 - 2 (3^-1/4 is nothing but 1/3^1/4)
a^2 + b^2 = 2 x 3^1/2 + 2/3^1/2
(a^2 = b^2)^2 = 4 x 3 + 4/3 + 2 (4) i.e. 12 + 4/3 + 8
3(a^2 = b^2)^2 = 36 + 4 + 24 = 64.
a^2 + b^2 = 2 x 3^1/2 + 2/3^1/2
(a^2 = b^2)^2 = 4 x 3 + 4/3 + 2 (4) i.e. 12 + 4/3 + 8
3(a^2 = b^2)^2 = 36 + 4 + 24 = 64.
-
a^2 = sq(3) + 2 + 1/sq(3)
b^2 = sq(3) - 2 + 1/sq(3)
a^2 + b^2 = 2sq(3) + 2/sq(3) = 2sq(3) + 2sq(3)/3 = (8/3)sq(3)
(a^2 + b^2)^2 = 64/9 * 3 = 64/3
3*(64/3)=64
b^2 = sq(3) - 2 + 1/sq(3)
a^2 + b^2 = 2sq(3) + 2/sq(3) = 2sq(3) + 2sq(3)/3 = (8/3)sq(3)
(a^2 + b^2)^2 = 64/9 * 3 = 64/3
3*(64/3)=64