Find g'(4) and compute the limit
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Find g'(4) and compute the limit

Find g'(4) and compute the limit

[From: ] [author: ] [Date: 11-11-14] [Hit: ]
Letting x = 4 yields g(4) = (1/4) ln 5.= lim(x→0) (5^x ln 5 - 3^x ln 3) / (1/(1 + x)),= ln(5/3).I hope this helps!......
1. (a) Compute g ' (4), given g(x) = integral (from t = 1 to sqrt(x))
ln(t^(2) + 1)dt.


(b) Compute lim x-->0 [5^x - 3^x]/[ln(1 + x)].

-
1) Using the Fundamental Theorem of Calculus with the Chain Rule,
g'(x) = ln((√x)^2 + 1) * (d/dx) √x
.......= ln(x + 1) * (1/2)x^(-1/2).

Letting x = 4 yields g'(4) = (1/4) ln 5.
-----------------
2) lim(x→0) (5^x - 3^x) / ln(1 + x); this is of the form "0/0"
= lim(x→0) (5^x ln 5 - 3^x ln 3) / (1/(1 + x)), by L'Hopital's Rule
= ln 5 - ln 3
= ln(5/3).

I hope this helps!

-
(a)

Let G(t) = ∫ ln(t²+1) dt -----> G'(t) = ln(t²+1)

g(x) = ∫[1 to √x] ln(t²+1) dt
g(x) = G(√x) - G(1)

g'(x) = G'(√x) * d/dx (√x) - 0
g'(x) = ln(x+1) * 1/(2√x)

g'(4) = ln(4+1) * 1/(2√4) = ln(5) / 4

-------------------------------

(b)

lim[x→0] (5^x - 3^x) / (ln(1+x)) = (1-1)/ln(1+0) = 0/0

Use L'Hopital's rule:
= lim[x→0] (ln(5) 5^x - ln(3) 3^x) / [1/(1+x)]
= (ln(5) - ln(3)) / (1/1)
= ln(5) - ln(3)
= ln(5/3)

Mαthmφm
1
keywords: limit,and,the,039,compute,Find,Find g'(4) and compute the limit
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .