Integrate ∫ sin3x sin4x dx
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Integrate ∫ sin3x sin4x dx

Integrate ∫ sin3x sin4x dx

[From: ] [author: ] [Date: 11-08-29] [Hit: ]
......
Note that the "sin3x" and "sin4x" are not powers.
Please show and explain any steps that you take.

-
The best first step is to use the following neat trig identity:

sinAsinB = (1/2)(cos(A - B) - cos(A + B))

from that, you have

(1/2)∫[cos(x) - cos(7x)]dx

from there, you can separate into a simple integral and a u-substitution with u = 7x.

End result:

(1/2)sin(x) - (1/14)sin(7 x) + C

-
There are 2 ways we can solve this: integration by parts, or we could use a trig identity

sin(a)sin(b) = (1/2) * (cos(a - b) - cos(a + b))

sin(3x) * sin(4x) * dx =>
(1/2) * (cos(3x - 4x) - cos(3x + 4x)) * dx =>
(1/2) * (cos(-x) - cos(7x)) * dx

Integrate:

(1/2) * (-sin(-x) - (1/7) * sin(7x)) + C =>
(1/2) * (sin(x) - (1/7) * sin(7x)) + C =>
(1/14) * (7sin(x) - sin(7x)) + C


Integrate by parts:

u = sin(3x)
du = 3 * cos(3x) * dx
dv = sin(4x) * dx
v = (-1/4) * cos(4x)

int(u * dv) =>
uv - int(v * du) =>
(-1/4) * sin(3x) * cos(4x) + (3/4) * int(cos(3x) * cos(4x) * dx)

u = cos(3x)
du = -3 * sin(3x) * dx
dv = cos(4x) * dx
v = (1/4) * sin(4x)

(-1/4) * sin(3x) * cos(4x) + (3/4) * ((1/4) * sin(4x) * cos(3x) + (3/4) * int(sin(4x) * sin(3x) * dx)) =>
(-1/4) * sin(3x) * cos(4x) + (3/16) * sin(4x) * cos(3x) + (9/16) * int(sin(4x) * sin(3x) * dx)

Now we have:

int(sin(4x) * sin(3x) * dx) = (-1/4) * sin(3x) * cos(4x) + (3/16) * sin(4x) * cos(3x) + (9/16) * int(sin(4x) * sin(3x) * dx)
int(sin(4x) * sin(3x) * dx) - (9/16) * int(sin(4x) * sin(3x) * dx) = (3/16) * sin(4x) * cos(3x) - (1/4) * sin(3x) * cos(4x)
int(sin(4x) * sin(3x) * dx) * (1 - (9/16)) = (3/16) * sin(4x) * cos(3x) - (1/4) * sin(3x) * cos(4x)
int(sin(4x) * sin(3x) * dx) * (7/16) = (3/16) * sin(4x) * cos(3x) - (1/4) * sin(3x) * cos(4x)
int(sin(4x) * sin(3x) * dx) = (16/7) * (1/16) * (3 * sin(4x) * cos(3x) - 4 * sin(3x) * cos(4x))
int(sin(4x) * sin(3x) * dx) = (1/7) * (3 * sin(4x) * cos(3x) - 4 * sin(3x) * cos(4x))

Add the constant of integration

int(sin(4x) * sin(3x) * dx) = (1/7) * (3 * sin(4x) * cos(3x) - 4 * sin(3x) * cos(4x)) + C
1
keywords: sin,Integrate,dx,int,Integrate ∫ sin3x sin4x dx
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .