Note that the "sin3x" and "sin4x" are not powers.
Please show and explain any steps that you take.
Please show and explain any steps that you take.
-
The best first step is to use the following neat trig identity:
sinAsinB = (1/2)(cos(A - B) - cos(A + B))
from that, you have
(1/2)∫[cos(x) - cos(7x)]dx
from there, you can separate into a simple integral and a u-substitution with u = 7x.
End result:
(1/2)sin(x) - (1/14)sin(7 x) + C
sinAsinB = (1/2)(cos(A - B) - cos(A + B))
from that, you have
(1/2)∫[cos(x) - cos(7x)]dx
from there, you can separate into a simple integral and a u-substitution with u = 7x.
End result:
(1/2)sin(x) - (1/14)sin(7 x) + C
-
There are 2 ways we can solve this: integration by parts, or we could use a trig identity
sin(a)sin(b) = (1/2) * (cos(a - b) - cos(a + b))
sin(3x) * sin(4x) * dx =>
(1/2) * (cos(3x - 4x) - cos(3x + 4x)) * dx =>
(1/2) * (cos(-x) - cos(7x)) * dx
Integrate:
(1/2) * (-sin(-x) - (1/7) * sin(7x)) + C =>
(1/2) * (sin(x) - (1/7) * sin(7x)) + C =>
(1/14) * (7sin(x) - sin(7x)) + C
Integrate by parts:
u = sin(3x)
du = 3 * cos(3x) * dx
dv = sin(4x) * dx
v = (-1/4) * cos(4x)
int(u * dv) =>
uv - int(v * du) =>
(-1/4) * sin(3x) * cos(4x) + (3/4) * int(cos(3x) * cos(4x) * dx)
u = cos(3x)
du = -3 * sin(3x) * dx
dv = cos(4x) * dx
v = (1/4) * sin(4x)
(-1/4) * sin(3x) * cos(4x) + (3/4) * ((1/4) * sin(4x) * cos(3x) + (3/4) * int(sin(4x) * sin(3x) * dx)) =>
(-1/4) * sin(3x) * cos(4x) + (3/16) * sin(4x) * cos(3x) + (9/16) * int(sin(4x) * sin(3x) * dx)
Now we have:
int(sin(4x) * sin(3x) * dx) = (-1/4) * sin(3x) * cos(4x) + (3/16) * sin(4x) * cos(3x) + (9/16) * int(sin(4x) * sin(3x) * dx)
int(sin(4x) * sin(3x) * dx) - (9/16) * int(sin(4x) * sin(3x) * dx) = (3/16) * sin(4x) * cos(3x) - (1/4) * sin(3x) * cos(4x)
int(sin(4x) * sin(3x) * dx) * (1 - (9/16)) = (3/16) * sin(4x) * cos(3x) - (1/4) * sin(3x) * cos(4x)
int(sin(4x) * sin(3x) * dx) * (7/16) = (3/16) * sin(4x) * cos(3x) - (1/4) * sin(3x) * cos(4x)
int(sin(4x) * sin(3x) * dx) = (16/7) * (1/16) * (3 * sin(4x) * cos(3x) - 4 * sin(3x) * cos(4x))
int(sin(4x) * sin(3x) * dx) = (1/7) * (3 * sin(4x) * cos(3x) - 4 * sin(3x) * cos(4x))
Add the constant of integration
int(sin(4x) * sin(3x) * dx) = (1/7) * (3 * sin(4x) * cos(3x) - 4 * sin(3x) * cos(4x)) + C
sin(a)sin(b) = (1/2) * (cos(a - b) - cos(a + b))
sin(3x) * sin(4x) * dx =>
(1/2) * (cos(3x - 4x) - cos(3x + 4x)) * dx =>
(1/2) * (cos(-x) - cos(7x)) * dx
Integrate:
(1/2) * (-sin(-x) - (1/7) * sin(7x)) + C =>
(1/2) * (sin(x) - (1/7) * sin(7x)) + C =>
(1/14) * (7sin(x) - sin(7x)) + C
Integrate by parts:
u = sin(3x)
du = 3 * cos(3x) * dx
dv = sin(4x) * dx
v = (-1/4) * cos(4x)
int(u * dv) =>
uv - int(v * du) =>
(-1/4) * sin(3x) * cos(4x) + (3/4) * int(cos(3x) * cos(4x) * dx)
u = cos(3x)
du = -3 * sin(3x) * dx
dv = cos(4x) * dx
v = (1/4) * sin(4x)
(-1/4) * sin(3x) * cos(4x) + (3/4) * ((1/4) * sin(4x) * cos(3x) + (3/4) * int(sin(4x) * sin(3x) * dx)) =>
(-1/4) * sin(3x) * cos(4x) + (3/16) * sin(4x) * cos(3x) + (9/16) * int(sin(4x) * sin(3x) * dx)
Now we have:
int(sin(4x) * sin(3x) * dx) = (-1/4) * sin(3x) * cos(4x) + (3/16) * sin(4x) * cos(3x) + (9/16) * int(sin(4x) * sin(3x) * dx)
int(sin(4x) * sin(3x) * dx) - (9/16) * int(sin(4x) * sin(3x) * dx) = (3/16) * sin(4x) * cos(3x) - (1/4) * sin(3x) * cos(4x)
int(sin(4x) * sin(3x) * dx) * (1 - (9/16)) = (3/16) * sin(4x) * cos(3x) - (1/4) * sin(3x) * cos(4x)
int(sin(4x) * sin(3x) * dx) * (7/16) = (3/16) * sin(4x) * cos(3x) - (1/4) * sin(3x) * cos(4x)
int(sin(4x) * sin(3x) * dx) = (16/7) * (1/16) * (3 * sin(4x) * cos(3x) - 4 * sin(3x) * cos(4x))
int(sin(4x) * sin(3x) * dx) = (1/7) * (3 * sin(4x) * cos(3x) - 4 * sin(3x) * cos(4x))
Add the constant of integration
int(sin(4x) * sin(3x) * dx) = (1/7) * (3 * sin(4x) * cos(3x) - 4 * sin(3x) * cos(4x)) + C