right ----> left
cosh x = [ e^x + e^(-x) ] / 2, sinh x = [ e^x - e^(- x) ] / 2
thus cosh x cosh y = { e^x e^y + e^(-x) e^y + e^x e^(-y) + e^(-x) e^(-y) } / 4
and sinh x sinh y = { e^x e^y - e^(-x e^y - e^x e^(-y) + e^(-x) e^(-y) } / 4
subtract [ 1/ 2] [e^(-x+y) + e^( x - y ) ] = cosh (x - y )
cosh x = [ e^x + e^(-x) ] / 2, sinh x = [ e^x - e^(- x) ] / 2
thus cosh x cosh y = { e^x e^y + e^(-x) e^y + e^x e^(-y) + e^(-x) e^(-y) } / 4
and sinh x sinh y = { e^x e^y - e^(-x e^y - e^x e^(-y) + e^(-x) e^(-y) } / 4
subtract [ 1/ 2] [e^(-x+y) + e^( x - y ) ] = cosh (x - y )