Prove the following identity: tanx+cotx=(secx)(cscx)
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Prove the following identity: tanx+cotx=(secx)(cscx)

Prove the following identity: tanx+cotx=(secx)(cscx)

[From: ] [author: ] [Date: 11-05-11] [Hit: ]
........
Thxs

-
tanx = sinx/cosx
cotx = cosx/sinx

so...........

tanx + cotx = (secx)(cscx)

sinx/cosx + cosx/sinx

Find the LCM, which in this case is sinxcosx..........

(sin²x + cos²x) / (sinxcosx) = (secx)(cscx)

sin²x + cos²x = 1

1/sinxcosx = (secx)(cscx)

secx = 1/cosx
cscx = 1/sinx
(1/sinx)(1/cosx) = (secx)(cscx)

(secx)(cscx) = (secx)(cscx)
1
keywords: identity,following,secx,cotx,Prove,tanx,cscx,the,Prove the following identity: tanx+cotx=(secx)(cscx)
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .