y = √81
y = 9
substitute y = 9 into
x^3 = y – 2^3
x^3 = 9 – 8
x^3 = 1
x = 3√1
x = 1
Therefore y = 9 and x = 1
y = 9
substitute y = 9 into
x^3 = y – 2^3
x^3 = 9 – 8
x^3 = 1
x = 3√1
x = 1
Therefore y = 9 and x = 1
-
x³=y-2³
y=√81................thus y=9
substitute into the first equation
x^3=9-2^3
x^3=9-8
x^3=1...........NOW this is a degree 3 equation so x will have 3 answer
x^3-1=0
FACTOR
(x-1)(x^2+x+1)=0
x-1=0.............x^2+x+1=0
x=1................solve with quadratic formula
x^2+x+1=0
x=[-(1)+-sqrt(1^2-4*1*1)]/[2(1)]
x=[-1+-sqrt(1-4)]/(2)
x=(-1+-sqrt(-3))/2
x=(-1+-isqrt3)/2
x={1,(-1+-isqrt3)/2
y=√81................thus y=9
substitute into the first equation
x^3=9-2^3
x^3=9-8
x^3=1...........NOW this is a degree 3 equation so x will have 3 answer
x^3-1=0
FACTOR
(x-1)(x^2+x+1)=0
x-1=0.............x^2+x+1=0
x=1................solve with quadratic formula
x^2+x+1=0
x=[-(1)+-sqrt(1^2-4*1*1)]/[2(1)]
x=[-1+-sqrt(1-4)]/(2)
x=(-1+-sqrt(-3))/2
x=(-1+-isqrt3)/2
x={1,(-1+-isqrt3)/2
-
Sqr(81) = 9 = y.
Y = 9 & x= 1.
X3 = 9 - 8
x3 = 1
therefore cbrt(1)
= 1..
Y = 9 & x= 1.
X3 = 9 - 8
x3 = 1
therefore cbrt(1)
= 1..
-
y=9 so x^3=9-8=1 giving x=cube root of 1,=1
Solution x=1,y=9
Solution x=1,y=9
-
x=cis(2kpi/3) where k is a natural number