tan^-1 (1 / (a + x)) + tan^-1 (1 / (a + y)) = tan^-1 (1 / a)
for all acute angles. Hence deduce that
tan^-1 (1 / 2) + tan^-1 (1 / 3) = pi / 4
and
tan^-1 (1 / 3) + tan^-1 (1 / 5) + tan^-1 (1 / 7) + tan^-1 (1 / 8) = pi / 4
for all acute angles. Hence deduce that
tan^-1 (1 / 2) + tan^-1 (1 / 3) = pi / 4
and
tan^-1 (1 / 3) + tan^-1 (1 / 5) + tan^-1 (1 / 7) + tan^-1 (1 / 8) = pi / 4
-
Let : xy = a² + 1.......................................… (1)
Put : 1/(a+x) = α and 1/(a+y) = ß.
Then :
( α + ß ) = (2a+x+y) / (a+x)(a+y) ........................................… (2)
1 - αß = [ (a+x)(a+y) - 1 ] / (a+x)(a+y)
. . . . .= [ ( a² + xy + a(x+y) - 1 ] / ()()
. . . . .= [ a² + ( a² + 1 ) + a(x+y) - 1 ] / ()() ... from (1)
. . . . .= [ 2a² + a(x+y) ] / ()()
. . . . .= a( 2a + x + y ) / ()() ........................................… (3)
______________________________________…
From (2) and (3),
( α + ß ) / ( 1 - αß ) = 1/a
so that
tanֿ¹ [ ( α + ß ) / ( 1 - αß ) ] = tanֿ¹ ( 1/a )
so that
tanֿ¹ α + tanֿ¹ ß = tanֿ¹ ( 1/a ),
that is,
tanֿ¹ [ 1/ (a+x) ] + tanֿ¹ [ a+y) ] = tanֿ¹ ( 1/a ) ............................ (4)
Hence, the result.
______________________________________…
Deduction-1 :
Put a = 1, x = 1 and y = 2 in (4).
Also : tanֿ¹ (1) = π/4.
_________________________________
Deduction-2 :
Use the method shown in
Deduction-1 above.
_________________________________
Happy To Help :
_________________________________
Put : 1/(a+x) = α and 1/(a+y) = ß.
Then :
( α + ß ) = (2a+x+y) / (a+x)(a+y) ........................................… (2)
1 - αß = [ (a+x)(a+y) - 1 ] / (a+x)(a+y)
. . . . .= [ ( a² + xy + a(x+y) - 1 ] / ()()
. . . . .= [ a² + ( a² + 1 ) + a(x+y) - 1 ] / ()() ... from (1)
. . . . .= [ 2a² + a(x+y) ] / ()()
. . . . .= a( 2a + x + y ) / ()() ........................................… (3)
______________________________________…
From (2) and (3),
( α + ß ) / ( 1 - αß ) = 1/a
so that
tanֿ¹ [ ( α + ß ) / ( 1 - αß ) ] = tanֿ¹ ( 1/a )
so that
tanֿ¹ α + tanֿ¹ ß = tanֿ¹ ( 1/a ),
that is,
tanֿ¹ [ 1/ (a+x) ] + tanֿ¹ [ a+y) ] = tanֿ¹ ( 1/a ) ............................ (4)
Hence, the result.
______________________________________…
Deduction-1 :
Put a = 1, x = 1 and y = 2 in (4).
Also : tanֿ¹ (1) = π/4.
_________________________________
Deduction-2 :
Use the method shown in
Deduction-1 above.
_________________________________
Happy To Help :
_________________________________