x^2 - y^2 - 2yz - z^2
Answer: (x+y+z)(x-y-z)
Answer: (x+y+z)(x-y-z)
-
Hi,
x² - y² - 2yz - z² =
x² - (y² + 2yz + z²) =
x² - (y + z)² =
(x - (y + z))(x + (y + z)) =
(x - y - z)(x + y + z) <==ANSWER
I hope that helps!! :-)
x² - y² - 2yz - z² =
x² - (y² + 2yz + z²) =
x² - (y + z)² =
(x - (y + z))(x + (y + z)) =
(x - y - z)(x + y + z) <==ANSWER
I hope that helps!! :-)
-
x^2 - y^2 - 2yz - z^2
= x^2 - (y^2 + 2yz + z^2)
= x^2 - (y + z)^2 --------> difference of squares
= (x - (y+z)) (x + (y+z))
= (x - y - z) (x + y + z)
-- Ματπmφm --
= x^2 - (y^2 + 2yz + z^2)
= x^2 - (y + z)^2 --------> difference of squares
= (x - (y+z)) (x + (y+z))
= (x - y - z) (x + y + z)
-- Ματπmφm --
-
x^2 - y^2 - 2yz - z^2 =
x^2-[y^2+2yz+z^2]=
x^2-(y+z)^2 ...........(this is a difference of squares)
=(x+y+z)(x-y-z)
x^2-[y^2+2yz+z^2]=
x^2-(y+z)^2 ...........(this is a difference of squares)
=(x+y+z)(x-y-z)