Determine algebracially the type of symmetry for the following function
y=-2x^3+1/2x^5
y=-2x^3+1/2x^5
-
f(x)= -2x^3+1/2x^5
f(-x) = -2(-x^3) +1/ -2x^5
f(-x)= 2x^3 -1/2x^5
so f(-x)= -f(x)
it is an odd function, symmetric over the origin.
f(-x) = -2(-x^3) +1/ -2x^5
f(-x)= 2x^3 -1/2x^5
so f(-x)= -f(x)
it is an odd function, symmetric over the origin.