1) 3y² - 2y + 2xy = x³
2) x = 2y / x² - y
please show the working properly..
2) x = 2y / x² - y
please show the working properly..
-
Question 1)
Take the derivative using implicit differentiation and the product rule:
6yy' - 2y' + [2 * 1 * y + 2 * x * y'] = 3x^2
Expand the brackets:
6yy' - 2y' + 2y + 2xy' = 3x^2
Now make y' the subject:
6yy' - 2y' + 2xy' = 3x^2 - 2y
y'(6y - 2 + 2x) = 3x^2 - 2y
y' = (3x^2 - 2y) / (6y + 2x - 2)
---------------
Question 2)
Multiply the denominator across:
x^3 - xy = 2y
Take the derivative:
3x^2 - [1y + xy'] = 2y'
Expand the brackets and make y' the subject:
3x^2 - y - xy' = 2y'
xy' + 2y' = 3x^2 - y
y'(x + 2) = 3x^2 - y
y' = (3x^2 - y) / (x + 2)
Take the derivative using implicit differentiation and the product rule:
6yy' - 2y' + [2 * 1 * y + 2 * x * y'] = 3x^2
Expand the brackets:
6yy' - 2y' + 2y + 2xy' = 3x^2
Now make y' the subject:
6yy' - 2y' + 2xy' = 3x^2 - 2y
y'(6y - 2 + 2x) = 3x^2 - 2y
y' = (3x^2 - 2y) / (6y + 2x - 2)
---------------
Question 2)
Multiply the denominator across:
x^3 - xy = 2y
Take the derivative:
3x^2 - [1y + xy'] = 2y'
Expand the brackets and make y' the subject:
3x^2 - y - xy' = 2y'
xy' + 2y' = 3x^2 - y
y'(x + 2) = 3x^2 - y
y' = (3x^2 - y) / (x + 2)
-
3y^2 - 2y +2xy =x^3
6y dy/dx - 2dy/dx + 2x dy/dx + 2y = 3x^2
dy/dx [ 6y - 2 + 2x] = 3x^2 -2y
dy/dx = ( 3x^2 - 2y )/(6y-2+2x) answer
============================
x = 2y/x^2 - y
or x^3 - xy = 2y
3x^2 - x dy/dx - y = 2dy/dx
dy/dx(2 + x) = 3x^2 - y
dy/dx = ( 3x^2 - y)/( 2+x) answer
6y dy/dx - 2dy/dx + 2x dy/dx + 2y = 3x^2
dy/dx [ 6y - 2 + 2x] = 3x^2 -2y
dy/dx = ( 3x^2 - 2y )/(6y-2+2x) answer
============================
x = 2y/x^2 - y
or x^3 - xy = 2y
3x^2 - x dy/dx - y = 2dy/dx
dy/dx(2 + x) = 3x^2 - y
dy/dx = ( 3x^2 - y)/( 2+x) answer