help please
-
Hello,
let's write the integral as:
∫ [ln (- t)] (t² - t) dt =
let:
ln (- t) = u → (differentiating) → (- 1) [1 /(- t)] dt = (1 /t) dt = du
(t² - t) dt = dv → (integrating) → [1/(2+1)] t^(2+1) - [1/(1+1)] t^(1+1) = (1/3)t³ - (1/2)t² = v
then, integrating by parts:
∫ u dv = v u - ∫ v du
∫ [ln (- t)] (t² - t) dt = [(1/3)t³ - (1/2)t²] ln (- t) - ∫ [(1/3)t³ - (1/2)t²] (1 /t) dt =
[(1/3)t³ - (1/2)t²] ln (- t) - ∫ [(1/3)t³ (1 /t) - (1/2)t² (1 /t)] dt =
(simplifying)
[(1/3)t³ - (1/2)t²] ln (- t) - ∫ [(1/3)t² - (1/2)t] dt =
(splitting into two integrals and pulling constants out)
[(1/3)t³ - (1/2)t²] ln (- t) - (1/3) ∫ t² dt - (-1/2) ∫ t dt =
[(1/3)t³ - (1/2)t²] ln (- t) - (1/3) [1/(2+1)] t^(2+1) + (1/2) ∫ t dt =
[(1/3)t³ - (1/2)t²] ln (- t) - (1/3)(1/3)t³ + (1/2) [1/(1+1)] t^(1+1) + C =
[(1/3)t³ - (1/2)t²] ln (- t) - (1/9)t³ + (1/2)(1/2)t² + C =
ending with:
[(1/3)t³ - (1/2)t²] ln (- t) - (1/9)t³ + (1/4)t² + C
I hope it helps
let's write the integral as:
∫ [ln (- t)] (t² - t) dt =
let:
ln (- t) = u → (differentiating) → (- 1) [1 /(- t)] dt = (1 /t) dt = du
(t² - t) dt = dv → (integrating) → [1/(2+1)] t^(2+1) - [1/(1+1)] t^(1+1) = (1/3)t³ - (1/2)t² = v
then, integrating by parts:
∫ u dv = v u - ∫ v du
∫ [ln (- t)] (t² - t) dt = [(1/3)t³ - (1/2)t²] ln (- t) - ∫ [(1/3)t³ - (1/2)t²] (1 /t) dt =
[(1/3)t³ - (1/2)t²] ln (- t) - ∫ [(1/3)t³ (1 /t) - (1/2)t² (1 /t)] dt =
(simplifying)
[(1/3)t³ - (1/2)t²] ln (- t) - ∫ [(1/3)t² - (1/2)t] dt =
(splitting into two integrals and pulling constants out)
[(1/3)t³ - (1/2)t²] ln (- t) - (1/3) ∫ t² dt - (-1/2) ∫ t dt =
[(1/3)t³ - (1/2)t²] ln (- t) - (1/3) [1/(2+1)] t^(2+1) + (1/2) ∫ t dt =
[(1/3)t³ - (1/2)t²] ln (- t) - (1/3)(1/3)t³ + (1/2) [1/(1+1)] t^(1+1) + C =
[(1/3)t³ - (1/2)t²] ln (- t) - (1/9)t³ + (1/2)(1/2)t² + C =
ending with:
[(1/3)t³ - (1/2)t²] ln (- t) - (1/9)t³ + (1/4)t² + C
I hope it helps