If C is the curve y=cosh(x) for 0
-
-
-
-
Integrate:
sqrt(1 + (dy/dx)^2) * dx
y = cosh(x)
dy/dx = sinh(x)
(dy/dx)^2 = sinh(x)^2
sqrt(1 + sinh(x)^2) * dx =>
sqrt(cosh(x)^2) * dx =>
cosh(x) * dx
Integrate
sinh(x) + C
From 0 to a
sinh(a) - sinh(0) =>
sinh(a) - 0 =>
sinh(a)
sqrt(1 + (dy/dx)^2) * dx
y = cosh(x)
dy/dx = sinh(x)
(dy/dx)^2 = sinh(x)^2
sqrt(1 + sinh(x)^2) * dx =>
sqrt(cosh(x)^2) * dx =>
cosh(x) * dx
Integrate
sinh(x) + C
From 0 to a
sinh(a) - sinh(0) =>
sinh(a) - 0 =>
sinh(a)
-
Integral Sqrt[1+ (dy/ dx)^2] dx from a to b
Integral (sqrt[1 + sinh[x]^2]dx from 0 to a
= Sinh [a]
Integral (sqrt[1 + sinh[x]^2]dx from 0 to a
= Sinh [a]
-
ds^2 = dy^2 +dx^2
s = [Int (0 ,a)] [1+(dy/dx)^2}^1/2 dx
y = coshx sub and crank ir out!
s = [Int (0 ,a)] [1+(dy/dx)^2}^1/2 dx
y = coshx sub and crank ir out!
1
keywords: of,find,using,calculus,How,length,to,curve,the,How to find the length of a curve using calculus