Solve the following differential equations:
1. x^2.y' = (x-1)y
2.xy' = [√(x^2 + y^2)] + y
1. x^2.y' = (x-1)y
2.xy' = [√(x^2 + y^2)] + y
-
(x^2)(dy/dx) = (x-1)(y)
This is a seperable differential equation:
(dy / y) = (x-1)(dx) / (x^2)
∫dy/y = ∫ (x-1)/x^2 dx
∫dy/ y = ∫ 1/x - 1/x^2
ln|y| = ln|x| + 1/x + C
y = e^(ln|x| + 1/x + C)
Ill come back to do number 2 later
This is a seperable differential equation:
(dy / y) = (x-1)(dx) / (x^2)
∫dy/y = ∫ (x-1)/x^2 dx
∫dy/ y = ∫ 1/x - 1/x^2
ln|y| = ln|x| + 1/x + C
y = e^(ln|x| + 1/x + C)
Ill come back to do number 2 later
-
the 2nd is separable after the sub y = wx
w + x [ dw / dx ] =[ x √( 1 + w² ) + wx ] / x = w + √ ( 1 + w² )--->
dw / √ ( 1 + w² ) = dx / x
w + x [ dw / dx ] =[ x √( 1 + w² ) + wx ] / x = w + √ ( 1 + w² )--->
dw / √ ( 1 + w² ) = dx / x