How do you simplify 2 sin(x/2) cos(x/2)?
Any help would be greatly appreciated.
Any help would be greatly appreciated.
-
Let y = 2 sin (x/2) cos (x/2)
Recall the double-angle formula fo sine:
sin 2θ := 2 sin θ cos θ
Let θ = x/2
y = 2 sin θ cos θ
y = sin 2θ
y = sin 2(x/2) ... Substitute.
y = sin x
Therefore:
2 sin (x/2) cos (x/2) := sin x
~~~
Recall the double-angle formula fo sine:
sin 2θ := 2 sin θ cos θ
Let θ = x/2
y = 2 sin θ cos θ
y = sin 2θ
y = sin 2(x/2) ... Substitute.
y = sin x
Therefore:
2 sin (x/2) cos (x/2) := sin x
~~~
-
2 sin(x/2) cos(x/2) = sin[x]