write down the second order taylor polynomial of f(x,y)=e^(sin x + y) at P(0,0)
-
f(x, y) = e^(sin x + y) ==> f(0, 0) = 1
f_x = cos x * e^(sin x + y) ==> f_x(0, 0) = 1
f_y = e^(sin x + y) ==> f_y(0, 0) = 1
f_xx = -sin x * e^(sin x + y) + (cos x)^2 * e^(sin x + y) ==> f_xx(0, 0) = 1
f_xy = cos x * e^(sin x + y) ==> f_xy(0, 0) = 1
f_yy = e^(sin x + y) ==> f_yy(0, 0) = 1
So, f(x,y) = 1 + 1(x - 0) + 1(y - 0) + (1/2!) [1(x - 0)^2 + 1(x - 0)(y - 0) + 1(y - 0)^2] + ...
I hope this helps!
f_x = cos x * e^(sin x + y) ==> f_x(0, 0) = 1
f_y = e^(sin x + y) ==> f_y(0, 0) = 1
f_xx = -sin x * e^(sin x + y) + (cos x)^2 * e^(sin x + y) ==> f_xx(0, 0) = 1
f_xy = cos x * e^(sin x + y) ==> f_xy(0, 0) = 1
f_yy = e^(sin x + y) ==> f_yy(0, 0) = 1
So, f(x,y) = 1 + 1(x - 0) + 1(y - 0) + (1/2!) [1(x - 0)^2 + 1(x - 0)(y - 0) + 1(y - 0)^2] + ...
I hope this helps!