Second order taylor polynomial
Favorites|Homepage
Subscriptions | sitemap
HOME > > Second order taylor polynomial

Second order taylor polynomial

[From: ] [author: ] [Date: 12-05-01] [Hit: ]
.I hope this helps!......
write down the second order taylor polynomial of f(x,y)=e^(sin x + y) at P(0,0)

-
f(x, y) = e^(sin x + y) ==> f(0, 0) = 1

f_x = cos x * e^(sin x + y) ==> f_x(0, 0) = 1
f_y = e^(sin x + y) ==> f_y(0, 0) = 1

f_xx = -sin x * e^(sin x + y) + (cos x)^2 * e^(sin x + y) ==> f_xx(0, 0) = 1
f_xy = cos x * e^(sin x + y) ==> f_xy(0, 0) = 1
f_yy = e^(sin x + y) ==> f_yy(0, 0) = 1

So, f(x,y) = 1 + 1(x - 0) + 1(y - 0) + (1/2!) [1(x - 0)^2 + 1(x - 0)(y - 0) + 1(y - 0)^2] + ...

I hope this helps!
1
keywords: taylor,Second,order,polynomial,Second order taylor polynomial
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .