then number given are: 2, 1 + i
please show your work.
please show your work.
-
complex zeros are found in conjugate pairs
so
y = (x - 2)(x - (1 + i))(x - (1 - i))
then
expand the complex pair first:
y = (x - 2)(x² - (1 - i)x - (1 + i)x + (1 - i²)) ← (a + b)(a - b) = a² - b²
= (x - 2)(x² - x + ix - x - ix + (1 + 1)) ← i² = -1
= (x - 2)(x² - 2x + 2)
= x(x² - 2x + 2) - 2(x² - 2x + 2) ← distributive property
= x³ - 2x² + 2x - 2x² + 4x - 4
= x³ - 4x² + 6x - 4
♣♦
so
y = (x - 2)(x - (1 + i))(x - (1 - i))
then
expand the complex pair first:
y = (x - 2)(x² - (1 - i)x - (1 + i)x + (1 - i²)) ← (a + b)(a - b) = a² - b²
= (x - 2)(x² - x + ix - x - ix + (1 + 1)) ← i² = -1
= (x - 2)(x² - 2x + 2)
= x(x² - 2x + 2) - 2(x² - 2x + 2) ← distributive property
= x³ - 2x² + 2x - 2x² + 4x - 4
= x³ - 4x² + 6x - 4
♣♦