Please show work.
-
(1 - cot^2x) / (tan^2x - 1) = cot^2x
(1 - cos^2x/sin^2x ) / (sin^2x/cos^2x - 1) = right side
(sin^2x - cos^2x)/sin^2x / (sin^2x - cos^2x)/cos^2x = right side
(sin^2x - cos^2x)(cos^2x) / (sin^2x)(sin^2x - cos^2x) = right side
cos^2x / sin^2x = right side
cot^2x = cot^2x
(1 - cos^2x/sin^2x ) / (sin^2x/cos^2x - 1) = right side
(sin^2x - cos^2x)/sin^2x / (sin^2x - cos^2x)/cos^2x = right side
(sin^2x - cos^2x)(cos^2x) / (sin^2x)(sin^2x - cos^2x) = right side
cos^2x / sin^2x = right side
cot^2x = cot^2x