If f(x)= 7arcsin(x^2) what is the derivative? f'(x)
please help
please help
-
derivative of arcsin(u) = u'/sqrt(1-u^2)
here u = x^2.
[7 arcsin(x^2)]' = 7*[arcsin(x^2)]' = 7*[2x/(sqrt(1-(x^2)^2))] = 14x/(sqrt(1-x^4)).
here u = x^2.
[7 arcsin(x^2)]' = 7*[arcsin(x^2)]' = 7*[2x/(sqrt(1-(x^2)^2))] = 14x/(sqrt(1-x^4)).
-
Let y = f(x)= 7arcsin(x^2) f')x) = dy/dx or
x^2 = sin (y/7) ----------------------------------------… 1or
2x = (1/7)cos(y/7)*(dy/dx)
or f'(x)=dy/dx = (14x)/cos(y/7) = 14x/sq rt[1-sin^2(y/7)] = 14x/[√(1-x^4)] from 1
x^2 = sin (y/7) ----------------------------------------… 1or
2x = (1/7)cos(y/7)*(dy/dx)
or f'(x)=dy/dx = (14x)/cos(y/7) = 14x/sq rt[1-sin^2(y/7)] = 14x/[√(1-x^4)] from 1