Differentiate Arc Sin(2^x+1) / (1+4^x) with respect to x
-
y = sinֿ¹ [ (2^(x+1)) / ( 1 + (4^x)) ]
y = sinֿ¹ [ 2( 2^x ) / ( 1 + (2^x)²) ] ............... (1)
____________________________
Let : (2^x) = tan Φ, i.e., Φ = tanֿ¹ (2^x).
Then :
2(2^x) / ( 1 + (2^x)² ) = ( 2 tan Φ ) / ( 1 + tan² Φ ) = sin ( 2Φ ) .............. (2)
_____________________________
From (1) and (2),
y = sinֿ¹ [ sin ( 2Φ ) ] = 2( Φ ) = 2· tanֿ¹ (2^x) ............................. (3)
______________________________
Diff... w.r.t. x, by Chain Rule,
dy/dx = 2· d/dx( tanֿ¹ (2^x))
. . . . .= 2· [ 1 / ( 1 + (2^x)²) ]· d/dx( 2^x )
. . . . .= 2· [ 1 / ( 1 + 4^x ) ]· (2^x)· ( ln 2 )
. . . . .= [ 2^(x+1) · ln 2 ] / ( 1 + 4^x ) ............................. Ans.
_____________________________________
Happy To Help !
_____________________________________
y = sinֿ¹ [ 2( 2^x ) / ( 1 + (2^x)²) ] ............... (1)
____________________________
Let : (2^x) = tan Φ, i.e., Φ = tanֿ¹ (2^x).
Then :
2(2^x) / ( 1 + (2^x)² ) = ( 2 tan Φ ) / ( 1 + tan² Φ ) = sin ( 2Φ ) .............. (2)
_____________________________
From (1) and (2),
y = sinֿ¹ [ sin ( 2Φ ) ] = 2( Φ ) = 2· tanֿ¹ (2^x) ............................. (3)
______________________________
Diff... w.r.t. x, by Chain Rule,
dy/dx = 2· d/dx( tanֿ¹ (2^x))
. . . . .= 2· [ 1 / ( 1 + (2^x)²) ]· d/dx( 2^x )
. . . . .= 2· [ 1 / ( 1 + 4^x ) ]· (2^x)· ( ln 2 )
. . . . .= [ 2^(x+1) · ln 2 ] / ( 1 + 4^x ) ............................. Ans.
_____________________________________
Happy To Help !
_____________________________________
-
You are Welcome, partha s !
Report Abuse
-
The derivative only exists where the function is defined, and since 2^x + 1 > 1 for all real x, the arcsine is undefined everywhere. That expression doesn't describe a real function of a real variable. There's no function so there's no derivative.
-
i believe you asking arc sin((2^x+1) / (1+4^x))
remember diff arc sin x = 1/√(1-x²)
you can let one variable i.e u =((2^x+1) / (1+4^x))
therefore you got y= arc sin u
using chain rules dy/du *du/dx
good luck dude!
remember diff arc sin x = 1/√(1-x²)
you can let one variable i.e u =((2^x+1) / (1+4^x))
therefore you got y= arc sin u
using chain rules dy/du *du/dx
good luck dude!