integral x^2/( square root of (4 + x^2), It would help if you could show the work THANKS!
-
Hello,
∫ [x² /√(4 + x²)] dx =
rewrite it as:
∫ [x² /√(2² + x²)] dx =
let:
x = 2tanθ
tanθ = x/2
dx = 2sec²θ dθ
then, substituting:
∫ [x² /√(2² + x²)] dx = ∫ {(2tanθ)² /√[2² + (2tanθ)²]} 2sec²θ dθ =
∫ [(4tan²θ) /√(2² + 2²tan²θ)] 2sec²θ dθ =
∫ {(4tan²θ) /√[2²(1 + tan²θ)]} 2sec²θ dθ =
(applying the identity 1 + tan²θ = sec²θ)
∫ [(4tan²θ) /√(2²sec²θ)] 2sec²θ dθ =
∫ [(4tan²θ) /(2secθ)] 2sec²θ dθ =
(simplifying and pulling the constant out)
4 ∫ tan²θ secθ dθ =
replace tan²θ with sec²θ - 1:
4 ∫ (sec²θ - 1) secθ dθ =
(expanding)
4 ∫ (secθ sec²θ - secθ) dθ =
(splitting into two integrals)
4 ∫ secθ sec²θ dθ - 4 ∫ secθ dθ
summing up, we have:
4 ∫ tan²θ secθ dθ = 4 ∫ secθ sec²θ dθ - 4 ∫ secθ dθ
let's now integrate ∫ secθ sec²θ dθ by parts, letting:
secθ = u → tanθ secθ dθ = du
sec²θ dθ = dv → tanθ = v
obtaining:
∫ u dv = v u - ∫ v du
4 ∫ tan²θ secθ dθ = 4 [tanθ secθ - ∫ tanθ (tanθ secθ) dθ] - 4 ∫ secθ dθ
4 ∫ tan²θ secθ dθ = 4tanθ secθ - 4 ∫ tan²θ secθ dθ - 4 ∫ secθ dθ
we have the same integral on both sides, thus let's collect it at the left side:
4 ∫ tan²θ secθ dθ + 4 ∫ tan²θ secθ dθ = 4tanθ secθ - 4 ∫ secθ dθ
2 (4 ∫ tan²θ secθ dθ) = 4tanθ secθ - 4 ∫ secθ dθ
hence:
4 ∫ tan²θ secθ dθ = (1/2) (4tanθ secθ - 4 ∫ secθ dθ) =
2tanθ secθ - 2 ∫ secθ dθ =
let's multiply the remaining integrand by (secθ + tanθ) /(tanθ + secθ) (= 1):
2tanθ secθ - 2 ∫ (secθ + tanθ) secθ dθ /(tanθ + secθ) =
(expanding)
2tanθ secθ - 2 ∫ (sec²θ + tanθ secθ) dθ /(tanθ + secθ) =
note that the numerator is the derivative of the denominator:
2tanθ secθ - 2 ∫ d(tanθ + secθ) /(tanθ + secθ) =
∫ [x² /√(4 + x²)] dx =
rewrite it as:
∫ [x² /√(2² + x²)] dx =
let:
x = 2tanθ
tanθ = x/2
dx = 2sec²θ dθ
then, substituting:
∫ [x² /√(2² + x²)] dx = ∫ {(2tanθ)² /√[2² + (2tanθ)²]} 2sec²θ dθ =
∫ [(4tan²θ) /√(2² + 2²tan²θ)] 2sec²θ dθ =
∫ {(4tan²θ) /√[2²(1 + tan²θ)]} 2sec²θ dθ =
(applying the identity 1 + tan²θ = sec²θ)
∫ [(4tan²θ) /√(2²sec²θ)] 2sec²θ dθ =
∫ [(4tan²θ) /(2secθ)] 2sec²θ dθ =
(simplifying and pulling the constant out)
4 ∫ tan²θ secθ dθ =
replace tan²θ with sec²θ - 1:
4 ∫ (sec²θ - 1) secθ dθ =
(expanding)
4 ∫ (secθ sec²θ - secθ) dθ =
(splitting into two integrals)
4 ∫ secθ sec²θ dθ - 4 ∫ secθ dθ
summing up, we have:
4 ∫ tan²θ secθ dθ = 4 ∫ secθ sec²θ dθ - 4 ∫ secθ dθ
let's now integrate ∫ secθ sec²θ dθ by parts, letting:
secθ = u → tanθ secθ dθ = du
sec²θ dθ = dv → tanθ = v
obtaining:
∫ u dv = v u - ∫ v du
4 ∫ tan²θ secθ dθ = 4 [tanθ secθ - ∫ tanθ (tanθ secθ) dθ] - 4 ∫ secθ dθ
4 ∫ tan²θ secθ dθ = 4tanθ secθ - 4 ∫ tan²θ secθ dθ - 4 ∫ secθ dθ
we have the same integral on both sides, thus let's collect it at the left side:
4 ∫ tan²θ secθ dθ + 4 ∫ tan²θ secθ dθ = 4tanθ secθ - 4 ∫ secθ dθ
2 (4 ∫ tan²θ secθ dθ) = 4tanθ secθ - 4 ∫ secθ dθ
hence:
4 ∫ tan²θ secθ dθ = (1/2) (4tanθ secθ - 4 ∫ secθ dθ) =
2tanθ secθ - 2 ∫ secθ dθ =
let's multiply the remaining integrand by (secθ + tanθ) /(tanθ + secθ) (= 1):
2tanθ secθ - 2 ∫ (secθ + tanθ) secθ dθ /(tanθ + secθ) =
(expanding)
2tanθ secθ - 2 ∫ (sec²θ + tanθ secθ) dθ /(tanθ + secθ) =
note that the numerator is the derivative of the denominator:
2tanθ secθ - 2 ∫ d(tanθ + secθ) /(tanθ + secθ) =
12
keywords: HELP,Sub,Trig,INTEGRALS,Calculus,Please,Calculus Trig Sub INTEGRALS HELP!!! Please!