sin^3x+cos^6x
-
Let y = sin^3x+cos^6x
= u+v [ u = sin^3x ; v = cos^3x ]
dy/dx= du/dx+dv/dx
now, du/dx = d/dx(sin^3x) = 3sin^2x.cosx ..............(1)
again, dv/dx= d/dx(cos^6) = 6cos^5(-sinx)...............(2)
(1)+(2) = 3sin^2cosx-6cos^5xsinx
= 3sinxcosx(sinx-2cos^4x)
therefore, dy/dx = 3sinx.cosx.(sin.x - 2cos^4x) Ans.
= u+v [ u = sin^3x ; v = cos^3x ]
dy/dx= du/dx+dv/dx
now, du/dx = d/dx(sin^3x) = 3sin^2x.cosx ..............(1)
again, dv/dx= d/dx(cos^6) = 6cos^5(-sinx)...............(2)
(1)+(2) = 3sin^2cosx-6cos^5xsinx
= 3sinxcosx(sinx-2cos^4x)
therefore, dy/dx = 3sinx.cosx.(sin.x - 2cos^4x) Ans.
-
let y = sin^3x+cos^6x
let u = sin^3x
v = cos^6x
ie, y=u+v
dy/dx= du/dx+dv/dx
du/dx = d/dx(sin^3x) = 3sin^2x.cosx ..............(1)
dv/dx= d/dx(cos^6x) = 6cos^5x.(-sinx)...............(2)
(1)+(2) = 3sin^2cosx-6cos^5xsinx
therefore, dy/dx= 3.sinx.cosx(sinx-2.cos^4x)
let u = sin^3x
v = cos^6x
ie, y=u+v
dy/dx= du/dx+dv/dx
du/dx = d/dx(sin^3x) = 3sin^2x.cosx ..............(1)
dv/dx= d/dx(cos^6x) = 6cos^5x.(-sinx)...............(2)
(1)+(2) = 3sin^2cosx-6cos^5xsinx
therefore, dy/dx= 3.sinx.cosx(sinx-2.cos^4x)
-
3sin^2 x (cos x) - 6cos ^5 x sin x
3sin x cos x (sin x cos ^ 4 x)
3sin x cos x (sin x cos ^ 4 x)