Differentiate wrt. x
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Differentiate wrt. x

Differentiate wrt. x

[From: ] [author: ] [Date: 11-09-19] [Hit: ]
............
sin^3x+cos^6x

-
Let y = sin^3x+cos^6x

= u+v [ u = sin^3x ; v = cos^3x ]


dy/dx= du/dx+dv/dx


now, du/dx = d/dx(sin^3x) = 3sin^2x.cosx ..............(1)


again, dv/dx= d/dx(cos^6) = 6cos^5(-sinx)...............(2)


(1)+(2) = 3sin^2cosx-6cos^5xsinx

= 3sinxcosx(sinx-2cos^4x)

therefore, dy/dx = 3sinx.cosx.(sin.x - 2cos^4x) Ans.

-
let y = sin^3x+cos^6x
let u = sin^3x
v = cos^6x
ie, y=u+v

dy/dx= du/dx+dv/dx

du/dx = d/dx(sin^3x) = 3sin^2x.cosx ..............(1)

dv/dx= d/dx(cos^6x) = 6cos^5x.(-sinx)...............(2)


(1)+(2) = 3sin^2cosx-6cos^5xsinx

therefore, dy/dx= 3.sinx.cosx(sinx-2.cos^4x)

-
3sin^2 x (cos x) - 6cos ^5 x sin x
3sin x cos x (sin x cos ^ 4 x)
1
keywords: Differentiate,wrt,Differentiate wrt. x
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .