Use the Product Rule:
(f * g * h)'(x) = f'(x) g(x) h(x) + f(x) g'(x) h(x) + f(x) g(x) h'(x)
x e^x sin(x)
= 1 * e^x sin(x) + x e^x sin(x) + x e^x cos(x)
= e^x [sin(x) + x sin(x) + x cos(x)]
(f * g * h)'(x) = f'(x) g(x) h(x) + f(x) g'(x) h(x) + f(x) g(x) h'(x)
x e^x sin(x)
= 1 * e^x sin(x) + x e^x sin(x) + x e^x cos(x)
= e^x [sin(x) + x sin(x) + x cos(x)]
-
——————————————————————————————————————
Differentiate x eˣ sinx
let u = x eˣ
v = sinx
Product Rule:
d uv
—— = uv' + vu'
dx
——————————————————————————————————————
d (x eˣ) sinx
————— = (x eˣ)•cosx + sinx•[x•eˣ + eˣ•1]
dx
= xeˣcosx + sinx•[xeˣ + eˣ]
= xeˣcosx + eˣ[x + 1]sinx
= xeˣcosx + eˣ(x + 1)sinx
= eˣ[ x cosx + (x + 1)sinx ] ← ANSWER
Have a good one!
——————————————————————————————————————
Differentiate x eˣ sinx
let u = x eˣ
v = sinx
Product Rule:
d uv
—— = uv' + vu'
dx
——————————————————————————————————————
d (x eˣ) sinx
————— = (x eˣ)•cosx + sinx•[x•eˣ + eˣ•1]
dx
= xeˣcosx + sinx•[xeˣ + eˣ]
= xeˣcosx + eˣ[x + 1]sinx
= xeˣcosx + eˣ(x + 1)sinx
= eˣ[ x cosx + (x + 1)sinx ] ← ANSWER
Have a good one!
——————————————————————————————————————
-
I assume this means x*e^x*sinx
[f(x)*g(x)*h(x)]'=f'(x)g(x)h(x)+ f(x)g'(x)h(x)+ f(x)g(x)h'(x)
1*e^x*sinx+x*e^x*sinx+x*e^x*cosx
e^x(xsinx+sinx+xcosx)
[f(x)*g(x)*h(x)]'=f'(x)g(x)h(x)+ f(x)g'(x)h(x)+ f(x)g(x)h'(x)
1*e^x*sinx+x*e^x*sinx+x*e^x*cosx
e^x(xsinx+sinx+xcosx)