Let , y= cosx/logx
If y= u/v , dy/dx =( u`v- uv`)/v^2
dy/dx = (d/dxcosx)logx - cosx d/dx(logx)
= (-sinxlogx - cosx * 1/x )/( logx)^2
= xsinxlogx + cosx/ x (logx)^2 Ans.
If y= u/v , dy/dx =( u`v- uv`)/v^2
dy/dx = (d/dxcosx)logx - cosx d/dx(logx)
= (-sinxlogx - cosx * 1/x )/( logx)^2
= xsinxlogx + cosx/ x (logx)^2 Ans.
-
the derivative of u/v is (u'v-uv')/v^2
u=cosx
u'=-sinx
v=logx
10^v=x
vln10=lnx
ln10v'=1/x
v'=1/(xln10)
so:
[-sinxlogx-cosx/(xln10)^2]/(logx)^2
u=cosx
u'=-sinx
v=logx
10^v=x
vln10=lnx
ln10v'=1/x
v'=1/(xln10)
so:
[-sinxlogx-cosx/(xln10)^2]/(logx)^2
-
[(Sec x)^2log x - 1/x cos x ]/ (log x )^2
-
(sinx*logx-cosx/x)/(logx)^2