I got very messy looking answers when I tried it. My graphing calculators answer was very different from my own.
-
I'm going to start by converting everything to cos, since the derivative will be easier to work with.
Numerator: 1 - sec x = 1 - 1/cos x = (cos x - 1) / cos x
Denominator: 1 + sec x = 1 + 1 / cos x = (cos x + 1) / cos x
[(cos x - 1) / cos x] / [(cos x + 1) / cos x]
[(cos x - 1) / cos x] * [cos x / cos x + 1]
(cos x - 1) / (cos x + 1)
Quotient rule:
f = cos x - 1
f ' = -sin x
g = cos x + 1
g' = -sin x
d/dx (f / g) = (g*f ' - f * g') / g^2
((cos x + 1)(- sin x) - (cos x - 1)(-sin x) ) / (cos x + 1)^2
- cos x sin x - sin x + cos x sin x - sin x / (cos x + 1)^2
= -2 sin x / (cos x + 1)^2
Edited to add:
A textbook or computer program may give you - 2 sec x tan x / (1 + sec x)^2. This is equivalent to the answer I got:
- 2 sec x tan x / (1 + sec x)^2
-2 (1/cos x)(sin x / cos x) / (1 + 1 / cos x)^2
-2 (sin x / cos^2 x) / (1 + 1/cos x)^2
-2 sin x / [cos^2 x (1 + 1/cos x)^2]
-2 sin x / [cos x (1 + 1/cos x)]^2
-2 sin x / (cos x + 1)^2
Numerator: 1 - sec x = 1 - 1/cos x = (cos x - 1) / cos x
Denominator: 1 + sec x = 1 + 1 / cos x = (cos x + 1) / cos x
[(cos x - 1) / cos x] / [(cos x + 1) / cos x]
[(cos x - 1) / cos x] * [cos x / cos x + 1]
(cos x - 1) / (cos x + 1)
Quotient rule:
f = cos x - 1
f ' = -sin x
g = cos x + 1
g' = -sin x
d/dx (f / g) = (g*f ' - f * g') / g^2
((cos x + 1)(- sin x) - (cos x - 1)(-sin x) ) / (cos x + 1)^2
- cos x sin x - sin x + cos x sin x - sin x / (cos x + 1)^2
= -2 sin x / (cos x + 1)^2
Edited to add:
A textbook or computer program may give you - 2 sec x tan x / (1 + sec x)^2. This is equivalent to the answer I got:
- 2 sec x tan x / (1 + sec x)^2
-2 (1/cos x)(sin x / cos x) / (1 + 1 / cos x)^2
-2 (sin x / cos^2 x) / (1 + 1/cos x)^2
-2 sin x / [cos^2 x (1 + 1/cos x)^2]
-2 sin x / [cos x (1 + 1/cos x)]^2
-2 sin x / (cos x + 1)^2