solve cos2x-5sinx-3=0?
Favorites|Homepage
Subscriptions | sitemap
HOME > > solve cos2x-5sinx-3=0?

solve cos2x-5sinx-3=0?

[From: ] [author: ] [Date: 17-05-10] [Hit: ]
sin(x) + sin(x)] + 2 = 0 2.sin²(x) + 4.sin(x) + sin(x) + 2 = 0 [2.sin²(x) + 4.sin(x)] + [sin(x) + 2] = 0 2.sin(x).......

cos(a + b) = cos(a).cos(b) - sin(a).sin(b) → suppose that: a = b = x

cos(x + x) = cos(x).cos(x) - sin(x).sin(x)

cos(2x) = cos²(x) - sin²(x)

cos(2x) = [1 - sin²(x)] - sin²(x)

cos(2x) = 1 - sin²(x) - sin²(x)

cos(2x) = 1 - 2.sin²(x) ← memorize this result


Your equation:

cos(2x) - 5.sin(x) - 3 = 0 → recall (1)

1 - 2.sin²(x) - 5.sin(x) - 3 = 0

- 2.sin²(x) - 5.sin(x) - 2 = 0

2.sin²(x) + 5.sin(x) + 2 = 0

2.sin²(x) + [4.sin(x) + sin(x)] + 2 = 0

2.sin²(x) + 4.sin(x) + sin(x) + 2 = 0

[2.sin²(x) + 4.sin(x)] + [sin(x) + 2] = 0

2.sin(x).[sin(x) + 2] + [sin(x) + 2] = 0

[sin(x) + 2].[2.sin(x) + 1] = 0


First case: [sin(x) + 2] = 0 → sin(x) + 2 = 0 → sin(x) = - 2 ← no posible

Second case: [2.sin(x) + 1] = 0 → 2.sin(x) + 1 = 0 → 2.sin(x) = - 1 → sin(x) = - 1/2


First possibility: x₁ = π + (π/6) → x₁ = 7π/6

Second possibility: x₂ = 2π - (π/6) → x₂ = 11π/6
-
D.W. say: does "cos2x" mean cos²x, or cos(2x) ?
-
stanschim say: cos(2x) - 5sin(x) - 3 = 0

(cos(x))^2 - (sin(x))^2 - 5sin(x) - 3 = 0

(1 - (sin(x))^2) - (sin(x))^2 - 5sin(x) - 3 = 0

-2(sin(x))^2 - 5sin(x)) -2 = 0

2(sin(x))^2 + 5sin(x) + 2 = 0
'
(2sin(x)) + 1)(sin(x) + 2) = 0

Solution occurs when 2sin(x) + 1 = 0. sin(x) + 2 can never equal 0 since that would require sin(x) = -2 (that is not possible).

2sin(x) + 1 = 0

2sin(x) = - 1

sin(x) = -1/2

Between 0 and 360 degrees, this will be satisfied at 210 degrees and 330 degrees. More generally, the solution could be expressed in degrees as (210 + 360(n-1)) degrees and (330 + 360(n-1)) degrees where n runs from 1,2,3...
-
Jeff Aaron say: cos(2x) - 5*sin(x) - 3 = 0
1 - 2 sin^2(x) - 5*sin(x) - 3 = 0
Let u = sin(x), so we have:
1 - 2u^2 - 5u - 3 = 0
-2u^2 - 5u - 2 = 0
keywords: solve,cos,sinx,solve cos2x-5sinx-3=0?
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .