Given that logx 40=p and logx 50=q, express log2 x and log5 x in terms of p and q.?
Favorites|Homepage
Subscriptions | sitemap
HOME > > Given that logx 40=p and logx 50=q, express log2 x and log5 x in terms of p and q.?

Given that logx 40=p and logx 50=q, express log2 x and log5 x in terms of p and q.?

[From: ] [author: ] [Date: 17-05-10] [Hit: ]
Ln(2) + Ln(5)] q.[3.Ln(2) + Ln(5)] = p.[2.Ln(5) + Ln(2)] 3q.Ln(2) + q.......
Given that logx 40=p and logx 50=q, express log2 x and log5 x in terms of p and q.?

-------------------------------------------------------

answers:
la console say: Log[x](40) = p → you know that: Log[a](x) = Ln(x)/Ln(a) where a is the base

Ln(40) / Ln(x) = p

Ln(x) = (1/p).Ln(40) ← memorize this result as (1)



Log[x](50) = q → you know that: Log[a](x) = Ln(x)/Ln(a) where a is the base

Ln(50) / Ln(x) = q

Ln(x) = (1/q).Ln(50) ← memorize this result as (2)

Ln(x) = (1/q).Ln(50) → recall (1): Ln(x) = (1/p).Ln(40)

(1/p).Ln(40) = (1/q).Ln(50)

q/p = Ln(50) / Ln(40)

q/p = Ln(25 * 2) / Ln(8 * 5) → you know that: Ln(ab) = Ln(a) + Ln(b)

q/p = [Ln(25) + Ln(2)] / [Ln(8) + Ln(5)] → you know that: Ln(25) = Ln(5^2) = 2.Ln(5)

q/p = [2.Ln(5) + Ln(2)] / [Ln(8) + Ln(5)] → you know that: Ln(8) = Ln(2^3) = 3.Ln(2)

q/p = [2.Ln(5) + Ln(2)] / [3.Ln(2) + Ln(5)]

q.[3.Ln(2) + Ln(5)] = p.[2.Ln(5) + Ln(2)]

3q.Ln(2) + q.Ln(5) = 2p.Ln(5) + p.Ln(2)

3q.Ln(2) - p.Ln(2) = 2p.Ln(5) - q.Ln(5)

(3q - p).Ln(2) = (2p - q).Ln(5)

Ln(2) / Ln(5) = (2p - q)/(3q - p) ← memorize this result as (3)

Ln(5) / Ln(2) = (3q - p)/(2p - q) ← memorize this result as (4)



You restart from (1)

Ln(x) = (1/p).Ln(40) → you divide by Ln(2) both sides

Ln(x) / Ln(2) = (1/p).Ln(40) / Ln(2)

Log[2](x) = (1/p).Ln(40) / Ln(2) → you know that: Ln(40) = Ln(8) + Ln(5) = 3.Ln(2) + Ln(5)

Log[2](x) = (1/p).[3.Ln(2) + Ln(5)] / Ln(2)

Log[2](x) = (1/p).[3 + {Ln(5) / Ln(2)}] → recall (4): Ln(5) / Ln(2) = (3q - p)/(2p - q)

Log[2](x) = (1/p).[3 + {(3q - p)/(2p - q)}]

Log[2](x) = (1/p).[{3.(2p - q) + (3q - p)}/(2p - q)]

Log[2](x) = (1/p).[{6p - 3q + 3q - p}/(2p - q)]

Log[2](x) = (1/p).[5p/(2p - q)]

Log[2](x) = 5/(2p - q)



You restart from (2)
12
keywords: and,log,of,logx,that,Given,express,terms,in,40,50,Given that logx 40=p and logx 50=q, express log2 x and log5 x in terms of p and q.?
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .