BQ: who discovered/invented pie?
-
Answering your Title Question: Whoever made the Greek language.
Answering you Text Question: "The first pies appeared around 9500 BC, in the Egyptian Neolithic period or New Stone Age, when the use of stone tools shaped by polishing or grinding became common, the domestication of plants and animals, the establishment of permanent villages, and the practice of crafts such as pottery and weaving."
Answering you Text Question: "The first pies appeared around 9500 BC, in the Egyptian Neolithic period or New Stone Age, when the use of stone tools shaped by polishing or grinding became common, the domestication of plants and animals, the establishment of permanent villages, and the practice of crafts such as pottery and weaving."
-
*confirmed. See!!!
Report Abuse
-
The Great Pyramid at Giza, constructed c. 2589–2566 BC, was built with a perimeter of about 1760 cubits and a height of about 280 cubits; the ratio 1760/280 ≈ 6.2857 is approximately equal to 2π ≈ 6.2832. Based on this ratio, some Egyptologists concluded that the pyramid builders had knowledge of π and deliberately designed the pyramid to incorporate the proportions of a circle.[23] Others maintain that the suggested relationship to π is merely a coincidence, because there is no evidence that the pyramid builders had any knowledge of π, and because the dimensions of the pyramid are based on other factors.
The earliest written approximations of π are found in Egypt and Babylon, both within 1 percent of the true value. In Babylon, a clay tablet dated 1900–1600 BC has a geometrical statement that, by implication, treats π as 25/8 = 3.1250. In Egypt, the Rhind Papyrus, dated around 1650 BC, but copied from a document dated to 1850 BC has a formula for the area of a circle that treats π as (16/9)2 ≈ 3.1605.
In India around 600 BC, the Shulba Sutras (Sanskrit texts that are rich in mathematical contents) treat π as (9785/5568)2 ≈ 3.088] In 150 BC, or perhaps earlier, Indian sources treat π as \scriptstyle \sqrt{10} ≈ 3.1622.
Two verses in the Hebrew Bible (written between the 8th and 3rd centuries BC) describe a ceremonial pool in the Temple of Solomon with a diameter of ten cubits and a circumference of thirty cubits; the verses imply π is about three if the pool is circular. Rabbi Nehemiah explained the discrepancy as being due to the thickness of the vessel. His early work of geometry, Mishnat ha-Middot, was written around 150 AD and takes the value of π to be three and one seventh.
The earliest written approximations of π are found in Egypt and Babylon, both within 1 percent of the true value. In Babylon, a clay tablet dated 1900–1600 BC has a geometrical statement that, by implication, treats π as 25/8 = 3.1250. In Egypt, the Rhind Papyrus, dated around 1650 BC, but copied from a document dated to 1850 BC has a formula for the area of a circle that treats π as (16/9)2 ≈ 3.1605.
In India around 600 BC, the Shulba Sutras (Sanskrit texts that are rich in mathematical contents) treat π as (9785/5568)2 ≈ 3.088] In 150 BC, or perhaps earlier, Indian sources treat π as \scriptstyle \sqrt{10} ≈ 3.1622.
Two verses in the Hebrew Bible (written between the 8th and 3rd centuries BC) describe a ceremonial pool in the Temple of Solomon with a diameter of ten cubits and a circumference of thirty cubits; the verses imply π is about three if the pool is circular. Rabbi Nehemiah explained the discrepancy as being due to the thickness of the vessel. His early work of geometry, Mishnat ha-Middot, was written around 150 AD and takes the value of π to be three and one seventh.