3x^2 cos(x^3+5)
i know the answer is sin(x^3+5)+C but i don't know how to get there with appropriate working.
thank you in advance
i know the answer is sin(x^3+5)+C but i don't know how to get there with appropriate working.
thank you in advance
-
when using substitution, look for the variable with the highest power.
u=x^3+5
du=(3x^2)dx
So, now you have the integral of cos(u)du.
∫cos(u)du = sin(u)
Now substitute back in for u
sin(u)=sin(x^3+5)+C
u=x^3+5
du=(3x^2)dx
So, now you have the integral of cos(u)du.
∫cos(u)du = sin(u)
Now substitute back in for u
sin(u)=sin(x^3+5)+C
-
∫ 3x^2 cos(x^3 + 5) dx
Let u = x^3 + 5
du = 3x^2 dx
So substitute in:
∫ cos(x^3 + 5) * 3x^2 dx
∫ cos(u) du
This would be:
sin(u) + C
Substitute back (u = x^3 + 5):
sin(x^3 + 5) + C
Let u = x^3 + 5
du = 3x^2 dx
So substitute in:
∫ cos(x^3 + 5) * 3x^2 dx
∫ cos(u) du
This would be:
sin(u) + C
Substitute back (u = x^3 + 5):
sin(x^3 + 5) + C
-
Let u = x^3 + 5
du = 3x^2 dx
∫ cos(u) du
sin(u) + C
Back substitute:
sin(x^3+5) + C
du = 3x^2 dx
∫ cos(u) du
sin(u) + C
Back substitute:
sin(x^3+5) + C
-
∫3x^2 cos(x^3 + 5) dx => u = x^3 + 5
du = 3x^2 dx
∫cos(u) du = sin(u) + C = sin(x^3 + 5) + C
du = 3x^2 dx
∫cos(u) du = sin(u) + C = sin(x^3 + 5) + C