If Zn= integration of (cot x)^n (n>1), show that Zn=-(cot x)^(n-1) / (n-1) - Z(n-2).
Favorites|Homepage
Subscriptions | sitemap
HOME > > If Zn= integration of (cot x)^n (n>1), show that Zn=-(cot x)^(n-1) / (n-1) - Z(n-2).

If Zn= integration of (cot x)^n (n>1), show that Zn=-(cot x)^(n-1) / (n-1) - Z(n-2).

[From: ] [author: ] [Date: 12-07-13] [Hit: ]
......
n > 1

so (cot x)^n = (cot x)^(n-2) cot ^2 x n- 2>= 0
= (cot x)^(n-2) (cosec ^2 x - 1)
= (cot x)^(n-2) cosec ^2 x - (cot x)^(n-2)

so
int (cot x)^n = int (cot x)^(n-2) cosec ^2 x - int (cot x)^(n-2)

if cot x = t then - cosec ^2 x dx = dt

so int (cot x)^(n-2) cosec ^2 x = - t^(n-2) dt = - t^(n-1)/(n-1) as n-2 >= 0 = - (cot x)^(n-1)/(n-1)

so int (cot x)^n = - (cot x)^(n-1)/(n-1) - int (cot x)^(n-2)

hence Zn=-(cot x)^(n-1) / (n-1) - Z(n-2)

QED

-
Z(n) +Z(n-2)
=Integral {(cotx)^n+(cotx)^(n-2)dx}
=Integral {(cotx)^(n-2) (cot^2(x)+1)dx}
=Integral {(cotx)^(n-2) cosec^2(x) dx}
=Integral {(cotx)^(n-2) (-1) d(cot(x)) dx}
=-(cotx)^(n-1) / (n-1) + C
1
keywords: of,that,gt,integration,show,If,cot,Zn,If Zn= integration of (cot x)^n (n>1), show that Zn=-(cot x)^(n-1) / (n-1) - Z(n-2).
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .