Given f"(x) = 9x- 5 and f'(0) = 4 and f(0) = -1, Find f'(x) and Find f(2)
f'(x) = ??
f(2) = ??
f'(x) = ??
f(2) = ??
-
f'' = 9x - 5
f' = 9/2*x^2 -5x + c
f'(0) = 4 ---> c = 4
f' = 9/2*x^2 - 5x + 4
f = 9/6*x^3 - 5/2*x^2 + 4x + c
f(0) = -1 --> c = -1
f(x) = 3/2*x^3 - 5/2*x^2 + 4x - 1
f(2) = 3/2*8 - 5/2*4 + 8 - 1
= 12 - 10 + 8 - 1
= 9
OG
f' = 9/2*x^2 -5x + c
f'(0) = 4 ---> c = 4
f' = 9/2*x^2 - 5x + 4
f = 9/6*x^3 - 5/2*x^2 + 4x + c
f(0) = -1 --> c = -1
f(x) = 3/2*x^3 - 5/2*x^2 + 4x - 1
f(2) = 3/2*8 - 5/2*4 + 8 - 1
= 12 - 10 + 8 - 1
= 9
OG