For this problem, we're asked to proof it, any help?
sin(a+b)cos(b)-cos(a+b)sin(b)=sin(a)
I try to apply the identities and all, then it becomes one mess of distribution and I just cry... Help? :(
sin(a+b)cos(b)-cos(a+b)sin(b)=sin(a)
I try to apply the identities and all, then it becomes one mess of distribution and I just cry... Help? :(
-
we'll give it a shot...
LHS:
sin (a + b) cos b = (sin a cos b + cos a sin b)cos b = sin a cos^2 b + cos a cos b sin b
cos (a + b)sin b = (cos a cos b - sin a sin b)sin b = cos a cos b sin b - sin a sin ^2 b
sin (a + b) cos b - cos (a + b) sin b = sin a cos^2 b + cos a cos b sin b - [cos a cos b sin b - sin a sin ^2 b]
= sin a cos^2 b + cos a cos b sin b - cos a cos b sin b + sin a sin^2 b
the cos a cos b sin b terms cancel, leaving
sin a cos^2 b + sin a sin^2 b
= sin a (cos^2 b + sin^2 b)
and since cos^2 b + sin ^2 b = 1, you have sin a(1) = sin a = RHS QED
LHS:
sin (a + b) cos b = (sin a cos b + cos a sin b)cos b = sin a cos^2 b + cos a cos b sin b
cos (a + b)sin b = (cos a cos b - sin a sin b)sin b = cos a cos b sin b - sin a sin ^2 b
sin (a + b) cos b - cos (a + b) sin b = sin a cos^2 b + cos a cos b sin b - [cos a cos b sin b - sin a sin ^2 b]
= sin a cos^2 b + cos a cos b sin b - cos a cos b sin b + sin a sin^2 b
the cos a cos b sin b terms cancel, leaving
sin a cos^2 b + sin a sin^2 b
= sin a (cos^2 b + sin^2 b)
and since cos^2 b + sin ^2 b = 1, you have sin a(1) = sin a = RHS QED
-
sin(a+b)=sina*cosb+sinb*cosa
and cos(a+b)=cosa*cosb-sina*sinb
so substituting
sin(a+b)*cos(b)-cos(a+b)*sin(b)=sin(a)
(sina*cosb+sinb*cosa)*(cosb)-(cosa*cos…
(sina*cosb^2+sinb*cosa*cosb)-(cosa*cos…
now as you can see we have a +sinb*cosa*cosb and a -sinb*cosa*cosb so adding those we have 0 and we are left with
sina*cosb^2-(-sina*sinb^2)
sina*cosb^2+sina*sinb^2=sina now we can factor out a sina
sina*(cosb^2+sinb^2)=sina
now remember that cosb^2+sinb^2=1 so substituting that in we have
sina*(1)=sina
sina=sina
and there you have it
hope that helped
and cos(a+b)=cosa*cosb-sina*sinb
so substituting
sin(a+b)*cos(b)-cos(a+b)*sin(b)=sin(a)
(sina*cosb+sinb*cosa)*(cosb)-(cosa*cos…
(sina*cosb^2+sinb*cosa*cosb)-(cosa*cos…
now as you can see we have a +sinb*cosa*cosb and a -sinb*cosa*cosb so adding those we have 0 and we are left with
sina*cosb^2-(-sina*sinb^2)
sina*cosb^2+sina*sinb^2=sina now we can factor out a sina
sina*(cosb^2+sinb^2)=sina
now remember that cosb^2+sinb^2=1 so substituting that in we have
sina*(1)=sina
sina=sina
and there you have it
hope that helped
-
wouldn't it be sin((a+b)-b)? then simplified to sin(a)?