I've been told I have to use integration by substitution. Any help would be really appreciated.
Thanks!
Thanks!
-
∫-2/(1 - x²) dx
∫2/(x² - 1) dx
∫[(x + 1) - (x - 1)]/(x + 1)(x - 1) dx
∫1/(x - 1) - 1/(x + 1) dx
= ln|(x - 1)/(x + 1)| + C
∫2/(x² - 1) dx
∫[(x + 1) - (x - 1)]/(x + 1)(x - 1) dx
∫1/(x - 1) - 1/(x + 1) dx
= ln|(x - 1)/(x + 1)| + C
-
∫ - 2/(1 - x^2) dx
= ∫ 2/(x^2 - 1) dx
= ∫ [1/(x - 1) - 1/(x + 1)] dx
= ln lx - 1l - ln lx + 1l + c
= ln l(x - 1)/(x + 1)l + c.
= ∫ 2/(x^2 - 1) dx
= ∫ [1/(x - 1) - 1/(x + 1)] dx
= ln lx - 1l - ln lx + 1l + c
= ln l(x - 1)/(x + 1)l + c.
-
-2 ArcTanh[x]