⅓π (x/3)²h = 3π*x*x/3
You have to find h, and apparently it simplifies to x²h/27 = x², and then h = 27. but I don't see how you get this. Could someone please show me the steps? Thanks.
Note: If you prefer the equation to be differently shown;
1/3(pi)*(x/3)(squared)*h = 3*(pi)*x*x/3
You have to find h, and apparently it simplifies to x²h/27 = x², and then h = 27. but I don't see how you get this. Could someone please show me the steps? Thanks.
Note: If you prefer the equation to be differently shown;
1/3(pi)*(x/3)(squared)*h = 3*(pi)*x*x/3
-
1. Look at the equation and simplify where possible.
Nothing obvious on the left, but on the right are two x variables: combine them
1/3*pi*(x/3)^2*h = 3*pi*x^2/3
There is also a 3 being divided by a 3 on the right: 3/3 = 1
1/3*pi*(x/3)^2*h = pi*x^2
2. Cancel out terms that are on both sides.
There are pi variables on both sides. Divide both sides by pi to "get rid" of them
Result: 1/3*(x/3)^2*h=x^2
3. Expand the "(x/3)^2" term.
Result: 1/3*(x/3)*(x/3)*h=x^2
4. Combine the 3 3's on the bottom (this is straight across multiplication, not addition)
Result: ((x * x * h )/27 = x ^ 2
5. Move the 27 to the right side by multiplying both sides by 27. Combine the 2 x terms into one.
Result: x^2 * h = 27 * x^2
6. Divide both sides by x^2
Result: h = 27.
Of course, personal preference and habit may make you tackle problems with different approaches. Use what you are most comfortable with.
Nothing obvious on the left, but on the right are two x variables: combine them
1/3*pi*(x/3)^2*h = 3*pi*x^2/3
There is also a 3 being divided by a 3 on the right: 3/3 = 1
1/3*pi*(x/3)^2*h = pi*x^2
2. Cancel out terms that are on both sides.
There are pi variables on both sides. Divide both sides by pi to "get rid" of them
Result: 1/3*(x/3)^2*h=x^2
3. Expand the "(x/3)^2" term.
Result: 1/3*(x/3)*(x/3)*h=x^2
4. Combine the 3 3's on the bottom (this is straight across multiplication, not addition)
Result: ((x * x * h )/27 = x ^ 2
5. Move the 27 to the right side by multiplying both sides by 27. Combine the 2 x terms into one.
Result: x^2 * h = 27 * x^2
6. Divide both sides by x^2
Result: h = 27.
Of course, personal preference and habit may make you tackle problems with different approaches. Use what you are most comfortable with.
-
1. Look at the equation and simplify where possible.
Nothing obvious on the left, but on the right are two x variables: combine them
1/3*pi*(x/3)^2*h = 3*pi*x^2/3
There is also a 3 being divided by a 3 on the right: 3/3 = 1
1/3*pi*(x/3)^2*h = pi*x^2
2. Cancel out terms that are on both sides.
There are pi variables on both sides. Divide both sides by pi to "get rid" of them
Result: 1/3*(x/3)^2*h=x^2
3. Expand the "(x/3)^2" term.
Result: 1/3*(x/3)*(x/3)*h=x^2
4. Combine the 3 3's on the bottom (this is straight across multiplication, not addition)
Result: ((x * x * h )/27 = x ^ 2
Nothing obvious on the left, but on the right are two x variables: combine them
1/3*pi*(x/3)^2*h = 3*pi*x^2/3
There is also a 3 being divided by a 3 on the right: 3/3 = 1
1/3*pi*(x/3)^2*h = pi*x^2
2. Cancel out terms that are on both sides.
There are pi variables on both sides. Divide both sides by pi to "get rid" of them
Result: 1/3*(x/3)^2*h=x^2
3. Expand the "(x/3)^2" term.
Result: 1/3*(x/3)*(x/3)*h=x^2
4. Combine the 3 3's on the bottom (this is straight across multiplication, not addition)
Result: ((x * x * h )/27 = x ^ 2
12
keywords: equation,please,for,Check,this,me,Check this equation for me please