I need to find the integral: integral (t-1)/(t+1) dt
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > I need to find the integral: integral (t-1)/(t+1) dt

I need to find the integral: integral (t-1)/(t+1) dt

[From: ] [author: ] [Date: 11-11-20] [Hit: ]
............
Note that t - 1 = t + 1 - 2.

∫(t - 1)/(t + 1) dt = ∫(t + 1 - 2)/(t + 1) dt = ∫1 - 2/(t + 1) dt

= t - 2*ln|t + 1| + C

-
∫[(t-1)/(t+1)]dt

t + 1 divides into t - 1 with a quotient of 1 and a remainder of -2 as follows:
1
.......┌────
t + 1│t - 1
........-t - 1
........────
.............-2


Therefore, (t - 1)/(t + 1) becomes 1 - 2/(t + 1) and the integral becomes two integrals:

∫[1]dt -2∫[1/(t+1)]dt = t - 2ln|t +1| + c

-
Divide to obtain 1 - [ 2 / (t + 1) ]

I = ∫ 1 - 2/(t + 1) dt

I = t - 2 log (t + 1) + C

-
(t-1)/(t+1) dt =
1 - 2/(t+1) dt

t - 2ln(t+1) + C

-
t - 2 Log[1 + t] + C
1
keywords: to,the,integral,need,dt,find,I need to find the integral: integral (t-1)/(t+1) dt
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .