Possible Answers:
A) x = -12
B) x = -6/5
C) x = -21/2
D) x = -6
Please this question is driving me crazy, I would like to know how to solve it, thanks!
A) x = -12
B) x = -6/5
C) x = -21/2
D) x = -6
Please this question is driving me crazy, I would like to know how to solve it, thanks!
-
(√7)^6x = 49^x–6
7^(6x/2) = 7^(2x-12)
3x = 2x-12
x = -12
Answer A) x = -12
7^(6x/2) = 7^(2x-12)
3x = 2x-12
x = -12
Answer A) x = -12
-
I assume you mean that the exponent of 49 is x - 6
(√7)^(6x) = 49^(x–6)
√7 = 7^(1/2)... so:
[7^(1/2)]^(6x) = (7^2)^(x-6)
7^(3x) = 7^[2(x - 6)]
Same base, so the exponent is the same:
3x = 2(x - 6)
3x = 2x - 12
x = -12
Remember that (a^m)^n = a^(m*n)
I hope this helps...
(√7)^(6x) = 49^(x–6)
√7 = 7^(1/2)... so:
[7^(1/2)]^(6x) = (7^2)^(x-6)
7^(3x) = 7^[2(x - 6)]
Same base, so the exponent is the same:
3x = 2(x - 6)
3x = 2x - 12
x = -12
Remember that (a^m)^n = a^(m*n)
I hope this helps...
-
Do you mean:
(sqrt(7))^(6x) = 49^(x - 6)
log((sqrt(7))^(6x)) = log(49^(x - 6))
6x*log(sqrt(7)) = (x - 6)*log(49)
6x*log(sqrt(7)) = x*log(49) - 6*log(49)
x*log(49) - 6x*log(sqrt(7)) = 6*log(49)
x(log(49) - 6*log(sqrt(7)) = 6*log(49)
x = (6*log(49)) / (log(49) - 6*log(sqrt(7))
x = -12
NOTE: All logs above must be in the same base, but it doesn't matter what base you use (e.g. 10, e, etc).
(sqrt(7))^(6x) = 49^(x - 6)
log((sqrt(7))^(6x)) = log(49^(x - 6))
6x*log(sqrt(7)) = (x - 6)*log(49)
6x*log(sqrt(7)) = x*log(49) - 6*log(49)
x*log(49) - 6x*log(sqrt(7)) = 6*log(49)
x(log(49) - 6*log(sqrt(7)) = 6*log(49)
x = (6*log(49)) / (log(49) - 6*log(sqrt(7))
x = -12
NOTE: All logs above must be in the same base, but it doesn't matter what base you use (e.g. 10, e, etc).
-
The answer is A)
Proof
(√7)^6x = 49^(x–6)?
ln((√7)^6x) = ln(49^(x–6))?
6xln(√7) = (x-6)ln49
where ln49 = ln(√7^4) = 4ln(√7)
6xln(√7)=4(x-6)ln(√7)
6x = 4(x-6)
6x-4x=-24
2x = -24
x = -12
Proof
(√7)^6x = 49^(x–6)?
ln((√7)^6x) = ln(49^(x–6))?
6xln(√7) = (x-6)ln49
where ln49 = ln(√7^4) = 4ln(√7)
6xln(√7)=4(x-6)ln(√7)
6x = 4(x-6)
6x-4x=-24
2x = -24
x = -12
-
(√7)^6x = 49^(x–6)
==>[(7)^(1/2)]^6x = (7^2)^(x - 6)
==>7^3x=7^(2x-12)
==> 3x = 2x-12
==> x=-12
==>[(7)^(1/2)]^6x = (7^2)^(x - 6)
==>7^3x=7^(2x-12)
==> 3x = 2x-12
==> x=-12
-
A) -12
Take logs of both sides
6xlogr7 = xlog49-6log49
6xlogr6-xlog49 = -6log49
x(6logr7-log49) = -6log49
x = -6log49/(6logr7-log49)
Take logs of both sides
6xlogr7 = xlog49-6log49
6xlogr6-xlog49 = -6log49
x(6logr7-log49) = -6log49
x = -6log49/(6logr7-log49)
-
X=-12
(7^1/2)^6x=(7^2)^x-6
7^3x=7^2x-12
3x=2x-12
x=12
(7^1/2)^6x=(7^2)^x-6
7^3x=7^2x-12
3x=2x-12
x=12