The length of the leg of a right triangle is √18 meters and √72 meters.
a) Find the length of the hypotenuse of the triangle in simplest radical form.
b) Find the perimeter of the triangle in simplest radical form.
c) Find the area of the triangle in simplest radical form.
a) Find the length of the hypotenuse of the triangle in simplest radical form.
b) Find the perimeter of the triangle in simplest radical form.
c) Find the area of the triangle in simplest radical form.
-
a^2 + b^2 = c^2
(√18)^2 + (√72)^2 = c^2
18 + 72 = c^2
90 = c^2
√90 = c
3√10 meters= c
√18 + √72 + 3√10 = P
3√2 + 6√2 + 3√10 = P
9√2 + 3√10 meters = P
(√18 * √72) / 2 = A
√1296 / 2 = A
36/2 = A
18 meters^2 = A
(√18)^2 + (√72)^2 = c^2
18 + 72 = c^2
90 = c^2
√90 = c
3√10 meters= c
√18 + √72 + 3√10 = P
3√2 + 6√2 + 3√10 = P
9√2 + 3√10 meters = P
(√18 * √72) / 2 = A
√1296 / 2 = A
36/2 = A
18 meters^2 = A
-
a) Pythagorean theorem a^2+b^2=c^2 so 18+72=100 Square root of 100 =10 so
hypotenuse=10 meters
b)P=side+side+side, sqrrt(18)+sqrrt(72)+10 = 9sqrrt(2)+10
9sqrrt(2)+10 meters
c)area= bh/2 sqrrt(18)*sqrrt(72)/2 =sqrrt(1296)=36/2=18
area=18 meters^2
sqrrt stands for the square root symbol
hypotenuse=10 meters
b)P=side+side+side, sqrrt(18)+sqrrt(72)+10 = 9sqrrt(2)+10
9sqrrt(2)+10 meters
c)area= bh/2 sqrrt(18)*sqrrt(72)/2 =sqrrt(1296)=36/2=18
area=18 meters^2
sqrrt stands for the square root symbol