Evaluate the indefinite integral
Evaluate the indefinite integral
Integral of x^2dx/sqrt 64-x^2
Evaluate the indefinite integral
Integral of x^2dx/sqrt 64-x^2
-
∫x²/√(64 - x²) dx
Make a trig sub and substitute x = 8*sin(t). Integral becomes:
∫(64*sin²(t)*8*cos(t))/(8*cos(t)) dt
∫64*sin²(t) dt
32*∫(1 - cos(2t)) dt
32t - 16*sin(2t) + C
32t - 32*sin(t)*cos(t) + C
32*arcsin(x/8) - 32(x/8)(√(64 - x²)/8) + C
32*arcsin(x/8) - x√(64 - x²)/2 + C
Make a trig sub and substitute x = 8*sin(t). Integral becomes:
∫(64*sin²(t)*8*cos(t))/(8*cos(t)) dt
∫64*sin²(t) dt
32*∫(1 - cos(2t)) dt
32t - 16*sin(2t) + C
32t - 32*sin(t)*cos(t) + C
32*arcsin(x/8) - 32(x/8)(√(64 - x²)/8) + C
32*arcsin(x/8) - x√(64 - x²)/2 + C