Show that sin A + sin 3A + sin 5A + sin 7A = 16 sin A cos ² A cos ² 2A
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Show that sin A + sin 3A + sin 5A + sin 7A = 16 sin A cos ² A cos ² 2A

Show that sin A + sin 3A + sin 5A + sin 7A = 16 sin A cos ² A cos ² 2A

[From: ] [author: ] [Date: 11-08-07] [Hit: ]
S. = 16 sin A cos ² A cos ² 2A = R.H.S.......
LHS = sin A + sin 3A + sin 5A + sin 7A
=(sin A + sin 7A)+ (sin 3A + sin 5A) = 2*sin 4A * cos 3A +2*sin 4A * cos A
= 2*sin 4A *[cos 3A + cos A] =(2)[ 2*sin 2A*cos 2A]*[2*cos 2A *cos A]
=(2)[ 2*{2*sinA*cosA}*cos 2A]*[2*cos 2A *cos A]= 16*sin A*cos^2 A cos^ 2A = RHS

-
Show that sin A + sin 3A + sin 5A + sin 7A = 16 sin A cos ² A cos ² 2A?

L.H.S. = sin A + sin 3A + sin 5A + sin 7A = sinA+sin7A + sin3A+sin5A
L.H.S. = 2sin[(A+7A)/2].cos[(A-7A)/2] +2sin[(3A+5A)/2].cos[(3A-5A)/2]
L.H.S. = 2sin4A.cos3A + 2sin4A.cosA
L.H.S. = 2sin4A[cos3A + cosA]

L.H.S. = 16 sin A cos ² A cos ² 2A = R.H.S. >==========< Q.E.D.
1
keywords: sup,that,cos,sin,Show,16,Show that sin A + sin 3A + sin 5A + sin 7A = 16 sin A cos ² A cos ² 2A
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .