xy' + y = x^2 lnx
-
xy' + y = x²*ln(x)
d/dx[yx] = x²*ln(x)
yx = ∫x²*ln(x) dx
For the integral on the right, IBP:
u = ln(x)
dv = x² dx
v = x³/3
du = dx/x
yx = x³/3*ln(x) - x³/9 + C
y = x²/3*ln(x) - x²/9 + C/x
d/dx[yx] = x²*ln(x)
yx = ∫x²*ln(x) dx
For the integral on the right, IBP:
u = ln(x)
dv = x² dx
v = x³/3
du = dx/x
yx = x³/3*ln(x) - x³/9 + C
y = x²/3*ln(x) - x²/9 + C/x