I'm assuming that you want to evaluate the following integral:
2 ∫ (dy / dx)(d²y / dx²) dx
Note that dy/dx = y ' (x) and d²y / dx² = y''(x) :
2 ∫ y'(x) y''(x) dx
Now make a substitution:
u = y'(x)
du = y''(x) dx
dx = [1 / y'' (x)] du
= 2 ∫ u du
= 2[(1/2)u²]
= u²
= [y ' (x)]² + C
= [dy / dx]² + C
Done!
2 ∫ (dy / dx)(d²y / dx²) dx
Note that dy/dx = y ' (x) and d²y / dx² = y''(x) :
2 ∫ y'(x) y''(x) dx
Now make a substitution:
u = y'(x)
du = y''(x) dx
dx = [1 / y'' (x)] du
= 2 ∫ u du
= 2[(1/2)u²]
= u²
= [y ' (x)]² + C
= [dy / dx]² + C
Done!