Using the quadratic formula find the roots of the equation. 3x²+5x-8=0
-
x1 = 1
x2 = -8/3
x2 = -8/3
-
[-5 +/- sqrt(25 - 4(3)(-8))]/6
[-5 +/- sqrt(25 + 96)]/6
= [-5 +/- 11]/6
= 6/6 and -16/6
= 1 and -8/3
[-5 +/- sqrt(25 + 96)]/6
= [-5 +/- 11]/6
= 6/6 and -16/6
= 1 and -8/3
-
a=3
b=5
c=-8
x=-b±(b^2-4ac)^1/2 / 2a
x=-5±{25-4(3)(-8)} / 6
x=-5 ±11/6
x= 1
x= -8/3
b=5
c=-8
x=-b±(b^2-4ac)^1/2 / 2a
x=-5±{25-4(3)(-8)} / 6
x=-5 ±11/6
x= 1
x= -8/3
-
3x² + 5x - 8 = 0
(x - 1)(3x + 8) = 0
x = 1
x = -8/3
(x - 1)(3x + 8) = 0
x = 1
x = -8/3
-
3x²+5x-8=0
(3x + 8)(x - 1) = 0
x = -8/3 , 1
(3x + 8)(x - 1) = 0
x = -8/3 , 1
-
x1 = (-5 + √25+96)/6
x2 = (-5 - √25+96)/6
x1 = 1
x2 = -8/3
x2 = (-5 - √25+96)/6
x1 = 1
x2 = -8/3
-
3x²+5x-8=0
D=5²-4*3*(-8)=11²
x₁,₂=(-5±11)/(3*2)
D=5²-4*3*(-8)=11²
x₁,₂=(-5±11)/(3*2)